Dynamics of a low-density tiger population in Southeast Asia in the context of improved law enforcement
Recovering small populations of threatened species is an important global conservation strategy. Monitoring the anticipated recovery, however, often relies on uncertain abundance indices rather than on rigorous demographic estimates. To counter the severe threat from poaching of wild tigers (Panther...
Gespeichert in:
Veröffentlicht in: | Conservation biology 2016-06, Vol.30 (3), p.639-648 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 648 |
---|---|
container_issue | 3 |
container_start_page | 639 |
container_title | Conservation biology |
container_volume | 30 |
creator | Duangchantrasiri, Somphot Umponjan, Mayuree Simcharoen, Saksit Pattanavibool, Anak Chaiwattana, Soontorn Maneerat, Sompoch Kumar, N. Samba Jathanna, Devcharan Srivathsa, Arjun Karanth, K. Ullas |
description | Recovering small populations of threatened species is an important global conservation strategy. Monitoring the anticipated recovery, however, often relies on uncertain abundance indices rather than on rigorous demographic estimates. To counter the severe threat from poaching of wild tigers (Panthera tigris), the Government of Thailand established an intensive patrolling system in 2005 to protect and recover its largest source population in Huai Kha Khaeng Wildlife Sanctuary. Concurrently, we assessed the dynamics of this tiger population over the next 8 years with rigorous photographic capture-recapture methods. From 2006 to 2012, we sampled across 624-1026 km² with 137-200 camera traps. Cameras deployed for 21,359 trap days yielded photographic records of 90 distinct individuals. We used closed model Bayesian spatial capture-recapture methods to estimate tiger abundances annually. Abundance estimates were integrated with likelihood-based open model analyses to estimate rates of annual and overall rates of survival, recruitment, and changes in abundance. Estimates of demographic parameters fluctuated widely: annual density ranged from 1.25 to 2.01 tigers/100 km², abundance from 35 to 58 tigers, survival from 79.6% to 95.5%, and annual recruitment from 0 to 25 tigers. The number of distinct individuals photographed demonstrates the value of photographic capture-recapture methods for assessments of population dynamics in rare and elusive species that are identifiable from natural markings. Possibly because of poaching pressure, overall tiger densities at Huai Kha Khaeng were 82-90% lower than in ecologically comparable sites in India. However, intensified patrolling after 2006 appeared to reduce poaching and was correlated with marginal improvement in tiger survival and recruitment. Our results suggest that population recovery of low-density tiger populations may be slower than anticipated by current global strategies aimed at doubling the number of wild tigers in a decade. Recuperar las poblaciones pequeñas de las especies amenazadas es una importante estrategia global de conservación. Sin embargo, monitorear la recuperación esperada generalmente depende de índices inciertos de abundancia en lugar de estimados demográficos rigurosos. Para contrarrestar la gran amenaza causada por la cacería furtiva de tigres (Panthera tigris), el Gobierno de Tailandia estableció un sistema intensivo de patrullaje en 2005 para proteger y recuperar la población fuente más gr |
doi_str_mv | 10.1111/cobi.12655 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790967804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24760992</jstor_id><sourcerecordid>24760992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4505-bd907b6b57714dfd15e10397d08f96502f9c1fedc1c901fc1162e425ab204c2e3</originalsourceid><addsrcrecordid>eNqNkc9vFCEYhonR2G314l1D4sWYTAVmGIZjXbXWbNqDv46EYT4q68ywBabr_veynbYmHoxcCLwPTz7yIvSMkmOa1xvjW3dMWc35A7SgnJUFFaV8iBakaZqiaSQ7QIcxrgkhktPqMTpggvKSM7lAl-92ox6cidhbrHHvt0UHY3Rph5O7hIA3fjP1Ojk_Yjfiz35KP0DHhE-i0_ubfMTGjwl-pb3CDZvgr6HDvd5iGK0PBgYY0xP0yOo-wtPb_Qh9_fD-y_Jjsbo4PVuerApTccKLtpNEtHXLhaBVZzvKgZJSio40VtacMCsNtdAZaiSh1lBaM6gY1y0jlWFQHqFXszePcTVBTGpw0UDf6xH8FBUVkshaNKT6D7QRVSYZyejLv9C1n8KYP3JDZWmeMVOvZ8oEH2MAqzbBDTrsFCVq35TaN6Vumsrwi1vl1A7Q3aN31WSAzsDW9bD7h0otL96e3Umfz2_WMfnwx1mJmkjJcl7MuYu5sPtch5-qFqXg6vv5qaqXn8oVa76p8_I3eou13A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787179397</pqid></control><display><type>article</type><title>Dynamics of a low-density tiger population in Southeast Asia in the context of improved law enforcement</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Duangchantrasiri, Somphot ; Umponjan, Mayuree ; Simcharoen, Saksit ; Pattanavibool, Anak ; Chaiwattana, Soontorn ; Maneerat, Sompoch ; Kumar, N. Samba ; Jathanna, Devcharan ; Srivathsa, Arjun ; Karanth, K. Ullas</creator><creatorcontrib>Duangchantrasiri, Somphot ; Umponjan, Mayuree ; Simcharoen, Saksit ; Pattanavibool, Anak ; Chaiwattana, Soontorn ; Maneerat, Sompoch ; Kumar, N. Samba ; Jathanna, Devcharan ; Srivathsa, Arjun ; Karanth, K. Ullas</creatorcontrib><description>Recovering small populations of threatened species is an important global conservation strategy. Monitoring the anticipated recovery, however, often relies on uncertain abundance indices rather than on rigorous demographic estimates. To counter the severe threat from poaching of wild tigers (Panthera tigris), the Government of Thailand established an intensive patrolling system in 2005 to protect and recover its largest source population in Huai Kha Khaeng Wildlife Sanctuary. Concurrently, we assessed the dynamics of this tiger population over the next 8 years with rigorous photographic capture-recapture methods. From 2006 to 2012, we sampled across 624-1026 km² with 137-200 camera traps. Cameras deployed for 21,359 trap days yielded photographic records of 90 distinct individuals. We used closed model Bayesian spatial capture-recapture methods to estimate tiger abundances annually. Abundance estimates were integrated with likelihood-based open model analyses to estimate rates of annual and overall rates of survival, recruitment, and changes in abundance. Estimates of demographic parameters fluctuated widely: annual density ranged from 1.25 to 2.01 tigers/100 km², abundance from 35 to 58 tigers, survival from 79.6% to 95.5%, and annual recruitment from 0 to 25 tigers. The number of distinct individuals photographed demonstrates the value of photographic capture-recapture methods for assessments of population dynamics in rare and elusive species that are identifiable from natural markings. Possibly because of poaching pressure, overall tiger densities at Huai Kha Khaeng were 82-90% lower than in ecologically comparable sites in India. However, intensified patrolling after 2006 appeared to reduce poaching and was correlated with marginal improvement in tiger survival and recruitment. Our results suggest that population recovery of low-density tiger populations may be slower than anticipated by current global strategies aimed at doubling the number of wild tigers in a decade. Recuperar las poblaciones pequeñas de las especies amenazadas es una importante estrategia global de conservación. Sin embargo, monitorear la recuperación esperada generalmente depende de índices inciertos de abundancia en lugar de estimados demográficos rigurosos. Para contrarrestar la gran amenaza causada por la cacería furtiva de tigres (Panthera tigris), el Gobierno de Tailandia estableció un sistema intensivo de patrullaje en 2005 para proteger y recuperar la población fuente más grande en el Santuario Huai Kha Khaeng. Simultáneamente, evaluamos las dinámicas de esta población de tigres durante los siguientes ocho años con rigurosos métodos fotográficos de captura-recaptura. De 2006 a 2012 muestreamos a lo largo de 624-1026 km² con 137-200 trampas cámara. Las cámaras desplegadas durante 21,359 días de trampa produjeron registros fotográficos de 90 individuos distinguibles. Usamos métodos espaciales de capturarecaptura y modelo bayesiano cerrado para estimar anualmente la abundancia de los tigres. Los estimados de abundancia estuvieron integrados por análisis de modelo abierto basados en la probabilidad para estimar la tasa anual y las tasas generales de supervivencia, reclutamiento y cambios en la abundancia. Los estimados de los parámetros demográficos fluctuaron ampliamente: la densidad anual varió entre 1.25 y 2.01 tigres/100 km², la abundancia entre 35 a 58 tigres, la supervivencia entre 79-6 y 95.5% y el reclutamiento anual de 0 a 25 tigres. El número de individuos distinguibles que fue fotografiado demuestra el valor de los métodos de captura-recaptura para la evaluación de las dinámicas poblacionales de especies raras y elusivas que son identificables gracias a marcas naturales. Posiblemente por causa de la presión ejercida por la caza furtiva, la densidad general de los tigres en Huai Kha Khaeng fue 82-90% más baja que en sitios ecológicamente comparables de India. Sin embargo, el patrullaje intensivo después de 2006 pareció reducir la caza furtiva y estuvo correlacionado con el mejoramiento marginal de la supervivencia y reclutamiento de los tigres. Nuestros resultados sugieren que la recuperación de las poblaciones de tigres con baja densidad puede ser más lenta de lo esperado por las estrategias globales actuales enfocadas en la duplicación del número de tigres en una década.</description><identifier>ISSN: 0888-8892</identifier><identifier>EISSN: 1523-1739</identifier><identifier>DOI: 10.1111/cobi.12655</identifier><identifier>PMID: 27153529</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>abundance estimation ; Animals ; Asia, Southeastern ; Bayes Theorem ; camera traps ; carnivores ; carnívoros ; Conservation ; Conservation of Natural Resources - legislation & jurisprudence ; Demographics ; dinámicas poblacionales ; Endangered & extinct species ; estimación de la abundancia ; exceso de caza ; Humans ; India ; Law Enforcement ; Likelihood Functions ; modelos espaciales de captura-recaptura ; overhunting ; Panthera tigris ; patrolling ; patrullaje ; Population Dynamics ; spatial capture-recapture models ; Special Section: Moving from Citizen to Civic Science to Address Wicked Conservation Problems ; Thailand ; Tigers ; trampas cámara ; Wildcats</subject><ispartof>Conservation biology, 2016-06, Vol.30 (3), p.639-648</ispartof><rights>2016 Society for Conservation Biology</rights><rights>2015 Society for Conservation Biology</rights><rights>2015 Society for Conservation Biology.</rights><rights>2016, Society for Conservation Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4505-bd907b6b57714dfd15e10397d08f96502f9c1fedc1c901fc1162e425ab204c2e3</citedby><cites>FETCH-LOGICAL-c4505-bd907b6b57714dfd15e10397d08f96502f9c1fedc1c901fc1162e425ab204c2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24760992$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24760992$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27153529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duangchantrasiri, Somphot</creatorcontrib><creatorcontrib>Umponjan, Mayuree</creatorcontrib><creatorcontrib>Simcharoen, Saksit</creatorcontrib><creatorcontrib>Pattanavibool, Anak</creatorcontrib><creatorcontrib>Chaiwattana, Soontorn</creatorcontrib><creatorcontrib>Maneerat, Sompoch</creatorcontrib><creatorcontrib>Kumar, N. Samba</creatorcontrib><creatorcontrib>Jathanna, Devcharan</creatorcontrib><creatorcontrib>Srivathsa, Arjun</creatorcontrib><creatorcontrib>Karanth, K. Ullas</creatorcontrib><title>Dynamics of a low-density tiger population in Southeast Asia in the context of improved law enforcement</title><title>Conservation biology</title><addtitle>Conservation Biology</addtitle><description>Recovering small populations of threatened species is an important global conservation strategy. Monitoring the anticipated recovery, however, often relies on uncertain abundance indices rather than on rigorous demographic estimates. To counter the severe threat from poaching of wild tigers (Panthera tigris), the Government of Thailand established an intensive patrolling system in 2005 to protect and recover its largest source population in Huai Kha Khaeng Wildlife Sanctuary. Concurrently, we assessed the dynamics of this tiger population over the next 8 years with rigorous photographic capture-recapture methods. From 2006 to 2012, we sampled across 624-1026 km² with 137-200 camera traps. Cameras deployed for 21,359 trap days yielded photographic records of 90 distinct individuals. We used closed model Bayesian spatial capture-recapture methods to estimate tiger abundances annually. Abundance estimates were integrated with likelihood-based open model analyses to estimate rates of annual and overall rates of survival, recruitment, and changes in abundance. Estimates of demographic parameters fluctuated widely: annual density ranged from 1.25 to 2.01 tigers/100 km², abundance from 35 to 58 tigers, survival from 79.6% to 95.5%, and annual recruitment from 0 to 25 tigers. The number of distinct individuals photographed demonstrates the value of photographic capture-recapture methods for assessments of population dynamics in rare and elusive species that are identifiable from natural markings. Possibly because of poaching pressure, overall tiger densities at Huai Kha Khaeng were 82-90% lower than in ecologically comparable sites in India. However, intensified patrolling after 2006 appeared to reduce poaching and was correlated with marginal improvement in tiger survival and recruitment. Our results suggest that population recovery of low-density tiger populations may be slower than anticipated by current global strategies aimed at doubling the number of wild tigers in a decade. Recuperar las poblaciones pequeñas de las especies amenazadas es una importante estrategia global de conservación. Sin embargo, monitorear la recuperación esperada generalmente depende de índices inciertos de abundancia en lugar de estimados demográficos rigurosos. Para contrarrestar la gran amenaza causada por la cacería furtiva de tigres (Panthera tigris), el Gobierno de Tailandia estableció un sistema intensivo de patrullaje en 2005 para proteger y recuperar la población fuente más grande en el Santuario Huai Kha Khaeng. Simultáneamente, evaluamos las dinámicas de esta población de tigres durante los siguientes ocho años con rigurosos métodos fotográficos de captura-recaptura. De 2006 a 2012 muestreamos a lo largo de 624-1026 km² con 137-200 trampas cámara. Las cámaras desplegadas durante 21,359 días de trampa produjeron registros fotográficos de 90 individuos distinguibles. Usamos métodos espaciales de capturarecaptura y modelo bayesiano cerrado para estimar anualmente la abundancia de los tigres. Los estimados de abundancia estuvieron integrados por análisis de modelo abierto basados en la probabilidad para estimar la tasa anual y las tasas generales de supervivencia, reclutamiento y cambios en la abundancia. Los estimados de los parámetros demográficos fluctuaron ampliamente: la densidad anual varió entre 1.25 y 2.01 tigres/100 km², la abundancia entre 35 a 58 tigres, la supervivencia entre 79-6 y 95.5% y el reclutamiento anual de 0 a 25 tigres. El número de individuos distinguibles que fue fotografiado demuestra el valor de los métodos de captura-recaptura para la evaluación de las dinámicas poblacionales de especies raras y elusivas que son identificables gracias a marcas naturales. Posiblemente por causa de la presión ejercida por la caza furtiva, la densidad general de los tigres en Huai Kha Khaeng fue 82-90% más baja que en sitios ecológicamente comparables de India. Sin embargo, el patrullaje intensivo después de 2006 pareció reducir la caza furtiva y estuvo correlacionado con el mejoramiento marginal de la supervivencia y reclutamiento de los tigres. Nuestros resultados sugieren que la recuperación de las poblaciones de tigres con baja densidad puede ser más lenta de lo esperado por las estrategias globales actuales enfocadas en la duplicación del número de tigres en una década.</description><subject>abundance estimation</subject><subject>Animals</subject><subject>Asia, Southeastern</subject><subject>Bayes Theorem</subject><subject>camera traps</subject><subject>carnivores</subject><subject>carnívoros</subject><subject>Conservation</subject><subject>Conservation of Natural Resources - legislation & jurisprudence</subject><subject>Demographics</subject><subject>dinámicas poblacionales</subject><subject>Endangered & extinct species</subject><subject>estimación de la abundancia</subject><subject>exceso de caza</subject><subject>Humans</subject><subject>India</subject><subject>Law Enforcement</subject><subject>Likelihood Functions</subject><subject>modelos espaciales de captura-recaptura</subject><subject>overhunting</subject><subject>Panthera tigris</subject><subject>patrolling</subject><subject>patrullaje</subject><subject>Population Dynamics</subject><subject>spatial capture-recapture models</subject><subject>Special Section: Moving from Citizen to Civic Science to Address Wicked Conservation Problems</subject><subject>Thailand</subject><subject>Tigers</subject><subject>trampas cámara</subject><subject>Wildcats</subject><issn>0888-8892</issn><issn>1523-1739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc9vFCEYhonR2G314l1D4sWYTAVmGIZjXbXWbNqDv46EYT4q68ywBabr_veynbYmHoxcCLwPTz7yIvSMkmOa1xvjW3dMWc35A7SgnJUFFaV8iBakaZqiaSQ7QIcxrgkhktPqMTpggvKSM7lAl-92ox6cidhbrHHvt0UHY3Rph5O7hIA3fjP1Ojk_Yjfiz35KP0DHhE-i0_ubfMTGjwl-pb3CDZvgr6HDvd5iGK0PBgYY0xP0yOo-wtPb_Qh9_fD-y_Jjsbo4PVuerApTccKLtpNEtHXLhaBVZzvKgZJSio40VtacMCsNtdAZaiSh1lBaM6gY1y0jlWFQHqFXszePcTVBTGpw0UDf6xH8FBUVkshaNKT6D7QRVSYZyejLv9C1n8KYP3JDZWmeMVOvZ8oEH2MAqzbBDTrsFCVq35TaN6Vumsrwi1vl1A7Q3aN31WSAzsDW9bD7h0otL96e3Umfz2_WMfnwx1mJmkjJcl7MuYu5sPtch5-qFqXg6vv5qaqXn8oVa76p8_I3eou13A</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Duangchantrasiri, Somphot</creator><creator>Umponjan, Mayuree</creator><creator>Simcharoen, Saksit</creator><creator>Pattanavibool, Anak</creator><creator>Chaiwattana, Soontorn</creator><creator>Maneerat, Sompoch</creator><creator>Kumar, N. Samba</creator><creator>Jathanna, Devcharan</creator><creator>Srivathsa, Arjun</creator><creator>Karanth, K. Ullas</creator><general>Blackwell Publishing Ltd</general><general>Wiley Periodicals Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201606</creationdate><title>Dynamics of a low-density tiger population in Southeast Asia in the context of improved law enforcement</title><author>Duangchantrasiri, Somphot ; Umponjan, Mayuree ; Simcharoen, Saksit ; Pattanavibool, Anak ; Chaiwattana, Soontorn ; Maneerat, Sompoch ; Kumar, N. Samba ; Jathanna, Devcharan ; Srivathsa, Arjun ; Karanth, K. Ullas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4505-bd907b6b57714dfd15e10397d08f96502f9c1fedc1c901fc1162e425ab204c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>abundance estimation</topic><topic>Animals</topic><topic>Asia, Southeastern</topic><topic>Bayes Theorem</topic><topic>camera traps</topic><topic>carnivores</topic><topic>carnívoros</topic><topic>Conservation</topic><topic>Conservation of Natural Resources - legislation & jurisprudence</topic><topic>Demographics</topic><topic>dinámicas poblacionales</topic><topic>Endangered & extinct species</topic><topic>estimación de la abundancia</topic><topic>exceso de caza</topic><topic>Humans</topic><topic>India</topic><topic>Law Enforcement</topic><topic>Likelihood Functions</topic><topic>modelos espaciales de captura-recaptura</topic><topic>overhunting</topic><topic>Panthera tigris</topic><topic>patrolling</topic><topic>patrullaje</topic><topic>Population Dynamics</topic><topic>spatial capture-recapture models</topic><topic>Special Section: Moving from Citizen to Civic Science to Address Wicked Conservation Problems</topic><topic>Thailand</topic><topic>Tigers</topic><topic>trampas cámara</topic><topic>Wildcats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duangchantrasiri, Somphot</creatorcontrib><creatorcontrib>Umponjan, Mayuree</creatorcontrib><creatorcontrib>Simcharoen, Saksit</creatorcontrib><creatorcontrib>Pattanavibool, Anak</creatorcontrib><creatorcontrib>Chaiwattana, Soontorn</creatorcontrib><creatorcontrib>Maneerat, Sompoch</creatorcontrib><creatorcontrib>Kumar, N. Samba</creatorcontrib><creatorcontrib>Jathanna, Devcharan</creatorcontrib><creatorcontrib>Srivathsa, Arjun</creatorcontrib><creatorcontrib>Karanth, K. Ullas</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Conservation biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duangchantrasiri, Somphot</au><au>Umponjan, Mayuree</au><au>Simcharoen, Saksit</au><au>Pattanavibool, Anak</au><au>Chaiwattana, Soontorn</au><au>Maneerat, Sompoch</au><au>Kumar, N. Samba</au><au>Jathanna, Devcharan</au><au>Srivathsa, Arjun</au><au>Karanth, K. Ullas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of a low-density tiger population in Southeast Asia in the context of improved law enforcement</atitle><jtitle>Conservation biology</jtitle><addtitle>Conservation Biology</addtitle><date>2016-06</date><risdate>2016</risdate><volume>30</volume><issue>3</issue><spage>639</spage><epage>648</epage><pages>639-648</pages><issn>0888-8892</issn><eissn>1523-1739</eissn><abstract>Recovering small populations of threatened species is an important global conservation strategy. Monitoring the anticipated recovery, however, often relies on uncertain abundance indices rather than on rigorous demographic estimates. To counter the severe threat from poaching of wild tigers (Panthera tigris), the Government of Thailand established an intensive patrolling system in 2005 to protect and recover its largest source population in Huai Kha Khaeng Wildlife Sanctuary. Concurrently, we assessed the dynamics of this tiger population over the next 8 years with rigorous photographic capture-recapture methods. From 2006 to 2012, we sampled across 624-1026 km² with 137-200 camera traps. Cameras deployed for 21,359 trap days yielded photographic records of 90 distinct individuals. We used closed model Bayesian spatial capture-recapture methods to estimate tiger abundances annually. Abundance estimates were integrated with likelihood-based open model analyses to estimate rates of annual and overall rates of survival, recruitment, and changes in abundance. Estimates of demographic parameters fluctuated widely: annual density ranged from 1.25 to 2.01 tigers/100 km², abundance from 35 to 58 tigers, survival from 79.6% to 95.5%, and annual recruitment from 0 to 25 tigers. The number of distinct individuals photographed demonstrates the value of photographic capture-recapture methods for assessments of population dynamics in rare and elusive species that are identifiable from natural markings. Possibly because of poaching pressure, overall tiger densities at Huai Kha Khaeng were 82-90% lower than in ecologically comparable sites in India. However, intensified patrolling after 2006 appeared to reduce poaching and was correlated with marginal improvement in tiger survival and recruitment. Our results suggest that population recovery of low-density tiger populations may be slower than anticipated by current global strategies aimed at doubling the number of wild tigers in a decade. Recuperar las poblaciones pequeñas de las especies amenazadas es una importante estrategia global de conservación. Sin embargo, monitorear la recuperación esperada generalmente depende de índices inciertos de abundancia en lugar de estimados demográficos rigurosos. Para contrarrestar la gran amenaza causada por la cacería furtiva de tigres (Panthera tigris), el Gobierno de Tailandia estableció un sistema intensivo de patrullaje en 2005 para proteger y recuperar la población fuente más grande en el Santuario Huai Kha Khaeng. Simultáneamente, evaluamos las dinámicas de esta población de tigres durante los siguientes ocho años con rigurosos métodos fotográficos de captura-recaptura. De 2006 a 2012 muestreamos a lo largo de 624-1026 km² con 137-200 trampas cámara. Las cámaras desplegadas durante 21,359 días de trampa produjeron registros fotográficos de 90 individuos distinguibles. Usamos métodos espaciales de capturarecaptura y modelo bayesiano cerrado para estimar anualmente la abundancia de los tigres. Los estimados de abundancia estuvieron integrados por análisis de modelo abierto basados en la probabilidad para estimar la tasa anual y las tasas generales de supervivencia, reclutamiento y cambios en la abundancia. Los estimados de los parámetros demográficos fluctuaron ampliamente: la densidad anual varió entre 1.25 y 2.01 tigres/100 km², la abundancia entre 35 a 58 tigres, la supervivencia entre 79-6 y 95.5% y el reclutamiento anual de 0 a 25 tigres. El número de individuos distinguibles que fue fotografiado demuestra el valor de los métodos de captura-recaptura para la evaluación de las dinámicas poblacionales de especies raras y elusivas que son identificables gracias a marcas naturales. Posiblemente por causa de la presión ejercida por la caza furtiva, la densidad general de los tigres en Huai Kha Khaeng fue 82-90% más baja que en sitios ecológicamente comparables de India. Sin embargo, el patrullaje intensivo después de 2006 pareció reducir la caza furtiva y estuvo correlacionado con el mejoramiento marginal de la supervivencia y reclutamiento de los tigres. Nuestros resultados sugieren que la recuperación de las poblaciones de tigres con baja densidad puede ser más lenta de lo esperado por las estrategias globales actuales enfocadas en la duplicación del número de tigres en una década.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>27153529</pmid><doi>10.1111/cobi.12655</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-8892 |
ispartof | Conservation biology, 2016-06, Vol.30 (3), p.639-648 |
issn | 0888-8892 1523-1739 |
language | eng |
recordid | cdi_proquest_miscellaneous_1790967804 |
source | Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | abundance estimation Animals Asia, Southeastern Bayes Theorem camera traps carnivores carnívoros Conservation Conservation of Natural Resources - legislation & jurisprudence Demographics dinámicas poblacionales Endangered & extinct species estimación de la abundancia exceso de caza Humans India Law Enforcement Likelihood Functions modelos espaciales de captura-recaptura overhunting Panthera tigris patrolling patrullaje Population Dynamics spatial capture-recapture models Special Section: Moving from Citizen to Civic Science to Address Wicked Conservation Problems Thailand Tigers trampas cámara Wildcats |
title | Dynamics of a low-density tiger population in Southeast Asia in the context of improved law enforcement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20a%20low-density%20tiger%20population%20in%20Southeast%20Asia%20in%20the%20context%20of%20improved%20law%20enforcement&rft.jtitle=Conservation%20biology&rft.au=Duangchantrasiri,%20Somphot&rft.date=2016-06&rft.volume=30&rft.issue=3&rft.spage=639&rft.epage=648&rft.pages=639-648&rft.issn=0888-8892&rft.eissn=1523-1739&rft_id=info:doi/10.1111/cobi.12655&rft_dat=%3Cjstor_proqu%3E24760992%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787179397&rft_id=info:pmid/27153529&rft_jstor_id=24760992&rfr_iscdi=true |