Multiprobe molecular imaging of an NMDA receptor hypofunction rat model for glutamatergic dysfunction

Abstract There are many indications of a connection between abnormal glutamate transmission through N-methyl- d -aspartate (NMDA) receptor hypofunction and the occurrence of schizophrenia. The importance of metabotropic glutamate receptor subtype 5 (mGluR5) became generally recognized due to its phy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychiatry research. Neuroimaging 2016-02, Vol.248, p.1-11
Hauptverfasser: Kosten, Lauren, Verhaeghe, Jeroen, Verkerk, Robert, Thomae, David, De Picker, Livia, wyffels, Leonie, Van Eetveldt, Annemie, Dedeurwaerdere, Stefanie, Stroobants, Sigrid, Staelens, Steven
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Psychiatry research. Neuroimaging
container_volume 248
creator Kosten, Lauren
Verhaeghe, Jeroen
Verkerk, Robert
Thomae, David
De Picker, Livia
wyffels, Leonie
Van Eetveldt, Annemie
Dedeurwaerdere, Stefanie
Stroobants, Sigrid
Staelens, Steven
description Abstract There are many indications of a connection between abnormal glutamate transmission through N-methyl- d -aspartate (NMDA) receptor hypofunction and the occurrence of schizophrenia. The importance of metabotropic glutamate receptor subtype 5 (mGluR5) became generally recognized due to its physical link through anchor proteins with NMDAR. Neuroinflammation as well as the kynurenine (tryptophan catabolite; TRYCAT) pathway are equally considered as major contributors to the pathology. We aimed to investigate this interplay between glutamate release, neuronal activation and inflammatory markers, by using small-animal positron emission tomography (PET) in a rat model known to induce schizophrenia-like symptoms. Daily intraperitoneal injection of MK801 or saline were administered to induce the model together with N-Acetyl-cysteine (NAc) or saline as the treatment in 24 male Sprague Dawley rats for one month. Biweekly in vivo [11 C]-ABP688 microPET was performed together with mGluR5 immunohistochemistry. Simultaneously, weekly in vivo [18 F]-FDG microPET imaging data for glucose metabolism was acquired and microglial activation was investigated with biweekly in vivo [18 F]-PBR111 scans versus OX42 immunohistochemistry. Finally, plasma samples were analyzed for TRYCAT metabolites. We show that chronic MK801 administration (and thus elevated endogenous glutamate) causes significant tissue loss in rat brain, enhances neuroinflammatory pathways and may upregulate mGluR5 expression.
doi_str_mv 10.1016/j.pscychresns.2016.01.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790964740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925492716300178</els_id><sourcerecordid>1765115050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c586t-a31c1d8677feeff6fc68d399c79168ed7c5c53c6630015a6b9338ae855ed56323</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxS0EotvCV0DmxiWLHa__XZCqLVCklh6As-V1JlsvThzsBCnfvk63rRCnSiNZsn9vRn5vEHpPyZoSKj4e1kN2s7tNkPu8rsvVmtBS7AVaUSXrSnIiXqIV0TWvNrqWJ-g05wMhNVOCvUYntVCEbaReIbiewuiHFHeAuxjATcEm7Du79_0exxbbHn-_vjjHCRwMY0z4dh5iO_Vu9LHHyY5F1kDAbXnah2m0nR0h7b3DzZwfuTfoVWtDhrcP5xn69eXzz-1ldXXz9dv2_KpyXImxsow62ighZQvQtqJ1QjVMayc1FQoa6bjjzAnBCKHcip1mTFlQnEPDBavZGfpw7Fs-9GeCPJrOZwch2B7ilA2VmmixkRvyDFRwSjnhC6qPqEsx5wStGVJxKM2GErMEYg7mn0DMEoghtBQr2ncPY6ZdB82T8jGBAmyPABRf_npIJjsPvYPGF8tH00T_rDGf_uvigu-9s-E3zJAPcUp9Md5Qk2tDzI9lM5bFoPdWSsXuAHrjuLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765115050</pqid></control><display><type>article</type><title>Multiprobe molecular imaging of an NMDA receptor hypofunction rat model for glutamatergic dysfunction</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Kosten, Lauren ; Verhaeghe, Jeroen ; Verkerk, Robert ; Thomae, David ; De Picker, Livia ; wyffels, Leonie ; Van Eetveldt, Annemie ; Dedeurwaerdere, Stefanie ; Stroobants, Sigrid ; Staelens, Steven</creator><creatorcontrib>Kosten, Lauren ; Verhaeghe, Jeroen ; Verkerk, Robert ; Thomae, David ; De Picker, Livia ; wyffels, Leonie ; Van Eetveldt, Annemie ; Dedeurwaerdere, Stefanie ; Stroobants, Sigrid ; Staelens, Steven</creatorcontrib><description>Abstract There are many indications of a connection between abnormal glutamate transmission through N-methyl- d -aspartate (NMDA) receptor hypofunction and the occurrence of schizophrenia. The importance of metabotropic glutamate receptor subtype 5 (mGluR5) became generally recognized due to its physical link through anchor proteins with NMDAR. Neuroinflammation as well as the kynurenine (tryptophan catabolite; TRYCAT) pathway are equally considered as major contributors to the pathology. We aimed to investigate this interplay between glutamate release, neuronal activation and inflammatory markers, by using small-animal positron emission tomography (PET) in a rat model known to induce schizophrenia-like symptoms. Daily intraperitoneal injection of MK801 or saline were administered to induce the model together with N-Acetyl-cysteine (NAc) or saline as the treatment in 24 male Sprague Dawley rats for one month. Biweekly in vivo [11 C]-ABP688 microPET was performed together with mGluR5 immunohistochemistry. Simultaneously, weekly in vivo [18 F]-FDG microPET imaging data for glucose metabolism was acquired and microglial activation was investigated with biweekly in vivo [18 F]-PBR111 scans versus OX42 immunohistochemistry. Finally, plasma samples were analyzed for TRYCAT metabolites. We show that chronic MK801 administration (and thus elevated endogenous glutamate) causes significant tissue loss in rat brain, enhances neuroinflammatory pathways and may upregulate mGluR5 expression.</description><identifier>ISSN: 0925-4927</identifier><identifier>EISSN: 1872-7506</identifier><identifier>DOI: 10.1016/j.pscychresns.2016.01.013</identifier><identifier>PMID: 26803479</identifier><language>eng</language><publisher>Netherlands: Elsevier Ireland Ltd</publisher><subject>Animal model ; Animals ; Brain - drug effects ; Brain - metabolism ; Disease Models, Animal ; Dizocilpine Maleate - administration &amp; dosage ; Dizocilpine Maleate - pharmacology ; Excitatory Amino Acid Antagonists - administration &amp; dosage ; Excitatory Amino Acid Antagonists - pharmacology ; Glutamate ; Glutamic Acid - metabolism ; Kynurenine - metabolism ; Male ; Molecular Imaging ; Positron-Emission Tomography - methods ; Psychiatry ; Radiology ; Rats ; Rats, Sprague-Dawley ; Receptor, Metabotropic Glutamate 5 - metabolism ; Receptors, N-Methyl-D-Aspartate - metabolism ; Schizophrenia ; Schizophrenia - metabolism ; TRYCAT ; Tryptophan - metabolism</subject><ispartof>Psychiatry research. Neuroimaging, 2016-02, Vol.248, p.1-11</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2016 Elsevier Ireland Ltd</rights><rights>Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c586t-a31c1d8677feeff6fc68d399c79168ed7c5c53c6630015a6b9338ae855ed56323</citedby><cites>FETCH-LOGICAL-c586t-a31c1d8677feeff6fc68d399c79168ed7c5c53c6630015a6b9338ae855ed56323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pscychresns.2016.01.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26803479$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosten, Lauren</creatorcontrib><creatorcontrib>Verhaeghe, Jeroen</creatorcontrib><creatorcontrib>Verkerk, Robert</creatorcontrib><creatorcontrib>Thomae, David</creatorcontrib><creatorcontrib>De Picker, Livia</creatorcontrib><creatorcontrib>wyffels, Leonie</creatorcontrib><creatorcontrib>Van Eetveldt, Annemie</creatorcontrib><creatorcontrib>Dedeurwaerdere, Stefanie</creatorcontrib><creatorcontrib>Stroobants, Sigrid</creatorcontrib><creatorcontrib>Staelens, Steven</creatorcontrib><title>Multiprobe molecular imaging of an NMDA receptor hypofunction rat model for glutamatergic dysfunction</title><title>Psychiatry research. Neuroimaging</title><addtitle>Psychiatry Res Neuroimaging</addtitle><description>Abstract There are many indications of a connection between abnormal glutamate transmission through N-methyl- d -aspartate (NMDA) receptor hypofunction and the occurrence of schizophrenia. The importance of metabotropic glutamate receptor subtype 5 (mGluR5) became generally recognized due to its physical link through anchor proteins with NMDAR. Neuroinflammation as well as the kynurenine (tryptophan catabolite; TRYCAT) pathway are equally considered as major contributors to the pathology. We aimed to investigate this interplay between glutamate release, neuronal activation and inflammatory markers, by using small-animal positron emission tomography (PET) in a rat model known to induce schizophrenia-like symptoms. Daily intraperitoneal injection of MK801 or saline were administered to induce the model together with N-Acetyl-cysteine (NAc) or saline as the treatment in 24 male Sprague Dawley rats for one month. Biweekly in vivo [11 C]-ABP688 microPET was performed together with mGluR5 immunohistochemistry. Simultaneously, weekly in vivo [18 F]-FDG microPET imaging data for glucose metabolism was acquired and microglial activation was investigated with biweekly in vivo [18 F]-PBR111 scans versus OX42 immunohistochemistry. Finally, plasma samples were analyzed for TRYCAT metabolites. We show that chronic MK801 administration (and thus elevated endogenous glutamate) causes significant tissue loss in rat brain, enhances neuroinflammatory pathways and may upregulate mGluR5 expression.</description><subject>Animal model</subject><subject>Animals</subject><subject>Brain - drug effects</subject><subject>Brain - metabolism</subject><subject>Disease Models, Animal</subject><subject>Dizocilpine Maleate - administration &amp; dosage</subject><subject>Dizocilpine Maleate - pharmacology</subject><subject>Excitatory Amino Acid Antagonists - administration &amp; dosage</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Glutamate</subject><subject>Glutamic Acid - metabolism</subject><subject>Kynurenine - metabolism</subject><subject>Male</subject><subject>Molecular Imaging</subject><subject>Positron-Emission Tomography - methods</subject><subject>Psychiatry</subject><subject>Radiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptor, Metabotropic Glutamate 5 - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - metabolism</subject><subject>Schizophrenia</subject><subject>Schizophrenia - metabolism</subject><subject>TRYCAT</subject><subject>Tryptophan - metabolism</subject><issn>0925-4927</issn><issn>1872-7506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk9v1DAQxS0EotvCV0DmxiWLHa__XZCqLVCklh6As-V1JlsvThzsBCnfvk63rRCnSiNZsn9vRn5vEHpPyZoSKj4e1kN2s7tNkPu8rsvVmtBS7AVaUSXrSnIiXqIV0TWvNrqWJ-g05wMhNVOCvUYntVCEbaReIbiewuiHFHeAuxjATcEm7Du79_0exxbbHn-_vjjHCRwMY0z4dh5iO_Vu9LHHyY5F1kDAbXnah2m0nR0h7b3DzZwfuTfoVWtDhrcP5xn69eXzz-1ldXXz9dv2_KpyXImxsow62ighZQvQtqJ1QjVMayc1FQoa6bjjzAnBCKHcip1mTFlQnEPDBavZGfpw7Fs-9GeCPJrOZwch2B7ilA2VmmixkRvyDFRwSjnhC6qPqEsx5wStGVJxKM2GErMEYg7mn0DMEoghtBQr2ncPY6ZdB82T8jGBAmyPABRf_npIJjsPvYPGF8tH00T_rDGf_uvigu-9s-E3zJAPcUp9Md5Qk2tDzI9lM5bFoPdWSsXuAHrjuLo</recordid><startdate>20160228</startdate><enddate>20160228</enddate><creator>Kosten, Lauren</creator><creator>Verhaeghe, Jeroen</creator><creator>Verkerk, Robert</creator><creator>Thomae, David</creator><creator>De Picker, Livia</creator><creator>wyffels, Leonie</creator><creator>Van Eetveldt, Annemie</creator><creator>Dedeurwaerdere, Stefanie</creator><creator>Stroobants, Sigrid</creator><creator>Staelens, Steven</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope></search><sort><creationdate>20160228</creationdate><title>Multiprobe molecular imaging of an NMDA receptor hypofunction rat model for glutamatergic dysfunction</title><author>Kosten, Lauren ; Verhaeghe, Jeroen ; Verkerk, Robert ; Thomae, David ; De Picker, Livia ; wyffels, Leonie ; Van Eetveldt, Annemie ; Dedeurwaerdere, Stefanie ; Stroobants, Sigrid ; Staelens, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c586t-a31c1d8677feeff6fc68d399c79168ed7c5c53c6630015a6b9338ae855ed56323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animal model</topic><topic>Animals</topic><topic>Brain - drug effects</topic><topic>Brain - metabolism</topic><topic>Disease Models, Animal</topic><topic>Dizocilpine Maleate - administration &amp; dosage</topic><topic>Dizocilpine Maleate - pharmacology</topic><topic>Excitatory Amino Acid Antagonists - administration &amp; dosage</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Glutamate</topic><topic>Glutamic Acid - metabolism</topic><topic>Kynurenine - metabolism</topic><topic>Male</topic><topic>Molecular Imaging</topic><topic>Positron-Emission Tomography - methods</topic><topic>Psychiatry</topic><topic>Radiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptor, Metabotropic Glutamate 5 - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - metabolism</topic><topic>Schizophrenia</topic><topic>Schizophrenia - metabolism</topic><topic>TRYCAT</topic><topic>Tryptophan - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosten, Lauren</creatorcontrib><creatorcontrib>Verhaeghe, Jeroen</creatorcontrib><creatorcontrib>Verkerk, Robert</creatorcontrib><creatorcontrib>Thomae, David</creatorcontrib><creatorcontrib>De Picker, Livia</creatorcontrib><creatorcontrib>wyffels, Leonie</creatorcontrib><creatorcontrib>Van Eetveldt, Annemie</creatorcontrib><creatorcontrib>Dedeurwaerdere, Stefanie</creatorcontrib><creatorcontrib>Stroobants, Sigrid</creatorcontrib><creatorcontrib>Staelens, Steven</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><jtitle>Psychiatry research. Neuroimaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosten, Lauren</au><au>Verhaeghe, Jeroen</au><au>Verkerk, Robert</au><au>Thomae, David</au><au>De Picker, Livia</au><au>wyffels, Leonie</au><au>Van Eetveldt, Annemie</au><au>Dedeurwaerdere, Stefanie</au><au>Stroobants, Sigrid</au><au>Staelens, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiprobe molecular imaging of an NMDA receptor hypofunction rat model for glutamatergic dysfunction</atitle><jtitle>Psychiatry research. Neuroimaging</jtitle><addtitle>Psychiatry Res Neuroimaging</addtitle><date>2016-02-28</date><risdate>2016</risdate><volume>248</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0925-4927</issn><eissn>1872-7506</eissn><abstract>Abstract There are many indications of a connection between abnormal glutamate transmission through N-methyl- d -aspartate (NMDA) receptor hypofunction and the occurrence of schizophrenia. The importance of metabotropic glutamate receptor subtype 5 (mGluR5) became generally recognized due to its physical link through anchor proteins with NMDAR. Neuroinflammation as well as the kynurenine (tryptophan catabolite; TRYCAT) pathway are equally considered as major contributors to the pathology. We aimed to investigate this interplay between glutamate release, neuronal activation and inflammatory markers, by using small-animal positron emission tomography (PET) in a rat model known to induce schizophrenia-like symptoms. Daily intraperitoneal injection of MK801 or saline were administered to induce the model together with N-Acetyl-cysteine (NAc) or saline as the treatment in 24 male Sprague Dawley rats for one month. Biweekly in vivo [11 C]-ABP688 microPET was performed together with mGluR5 immunohistochemistry. Simultaneously, weekly in vivo [18 F]-FDG microPET imaging data for glucose metabolism was acquired and microglial activation was investigated with biweekly in vivo [18 F]-PBR111 scans versus OX42 immunohistochemistry. Finally, plasma samples were analyzed for TRYCAT metabolites. We show that chronic MK801 administration (and thus elevated endogenous glutamate) causes significant tissue loss in rat brain, enhances neuroinflammatory pathways and may upregulate mGluR5 expression.</abstract><cop>Netherlands</cop><pub>Elsevier Ireland Ltd</pub><pmid>26803479</pmid><doi>10.1016/j.pscychresns.2016.01.013</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-4927
ispartof Psychiatry research. Neuroimaging, 2016-02, Vol.248, p.1-11
issn 0925-4927
1872-7506
language eng
recordid cdi_proquest_miscellaneous_1790964740
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animal model
Animals
Brain - drug effects
Brain - metabolism
Disease Models, Animal
Dizocilpine Maleate - administration & dosage
Dizocilpine Maleate - pharmacology
Excitatory Amino Acid Antagonists - administration & dosage
Excitatory Amino Acid Antagonists - pharmacology
Glutamate
Glutamic Acid - metabolism
Kynurenine - metabolism
Male
Molecular Imaging
Positron-Emission Tomography - methods
Psychiatry
Radiology
Rats
Rats, Sprague-Dawley
Receptor, Metabotropic Glutamate 5 - metabolism
Receptors, N-Methyl-D-Aspartate - metabolism
Schizophrenia
Schizophrenia - metabolism
TRYCAT
Tryptophan - metabolism
title Multiprobe molecular imaging of an NMDA receptor hypofunction rat model for glutamatergic dysfunction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiprobe%20molecular%20imaging%20of%20an%20NMDA%20receptor%20hypofunction%20rat%20model%20for%20glutamatergic%20dysfunction&rft.jtitle=Psychiatry%20research.%20Neuroimaging&rft.au=Kosten,%20Lauren&rft.date=2016-02-28&rft.volume=248&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0925-4927&rft.eissn=1872-7506&rft_id=info:doi/10.1016/j.pscychresns.2016.01.013&rft_dat=%3Cproquest_cross%3E1765115050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765115050&rft_id=info:pmid/26803479&rft_els_id=S0925492716300178&rfr_iscdi=true