Interplay between histone H1 structure and function
H1 linker histones are involved both in the maintenance of higher-order chromatin structure and in gene regulation. Histone H1 exists in multiple isoforms, is evolutionarily variable and undergoes a large variety of post-translational modifications. We review recent progress in the understanding of...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta 2016-03, Vol.1859 (3), p.444-454 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 454 |
---|---|
container_issue | 3 |
container_start_page | 444 |
container_title | Biochimica et biophysica acta |
container_volume | 1859 |
creator | Roque, Alicia Ponte, Inma Suau, Pedro |
description | H1 linker histones are involved both in the maintenance of higher-order chromatin structure and in gene regulation. Histone H1 exists in multiple isoforms, is evolutionarily variable and undergoes a large variety of post-translational modifications. We review recent progress in the understanding of the folding and structure of histone H1 domains with an emphasis on the interactions with DNA. The importance of intrinsic disorder and hydrophobic interactions in the folding and function of the carboxy-terminal domain (CTD) is discussed. The induction of a molten globule-state in the CTD by macromolecular crowding is also considered. The effects of phosphorylation by cyclin-dependent kinases on the structure of the CTD, as well as on chromatin condensation and oligomerization, are described. We also address the extranuclear functions of histone H1, including the interaction with the β-amyloid peptide. This article is part of a Special Issue entitled: Histone H1, edited by Dr. Albert Jordan.
•H1 terminal domains are intrinsically disordered regions which fold upon DNA interaction.•Post-translational modifications can modulate H1 structure and function.•Histone H1 can perform extranuclear functions associated with the immune system and with Alzheimer's disease. |
doi_str_mv | 10.1016/j.bbagrm.2015.09.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790959498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1874939915002035</els_id><sourcerecordid>1790959498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-e2b3c8d5b042f8c995730bdeb453e63bed08db67491aca7d11a3a7f7bd2a12fd3</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMojq9_INKlm9abpE17N4KILxDc6DrkcasdZtoxSRX_vdUZXYqrexffOQc-xo45FBy4OpsX1prnsCwE8KoALABwi-3xplZ5KQVsf_9ljhJxxvZjnAMoLgB22UyokldYqz0m7_pEYbUwH5ml9E7UZy9dTENP2S3PYgqjS2OgzPQ-a8fepW7oD9lOaxaRjjb3gD1dXz1e3ub3Dzd3lxf3uZNYpZyEla7xlYVStI1DrGoJ1pMtK0lKWvLQeKvqErlxpvacG2nqtrZeGC5aLw_Y6bp3FYbXkWLSyy46WixMT8MYNa8RsMISm3-gChVHEHJCyzXqwhBjoFavQrc04UNz0F9m9VyvzeovsxpQT2an2MlmYbRL8r-hH5UTcL4GaFLy1lHQ0XXUO_JdIJe0H7q_Fz4BR22LHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1769619023</pqid></control><display><type>article</type><title>Interplay between histone H1 structure and function</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Roque, Alicia ; Ponte, Inma ; Suau, Pedro</creator><creatorcontrib>Roque, Alicia ; Ponte, Inma ; Suau, Pedro</creatorcontrib><description>H1 linker histones are involved both in the maintenance of higher-order chromatin structure and in gene regulation. Histone H1 exists in multiple isoforms, is evolutionarily variable and undergoes a large variety of post-translational modifications. We review recent progress in the understanding of the folding and structure of histone H1 domains with an emphasis on the interactions with DNA. The importance of intrinsic disorder and hydrophobic interactions in the folding and function of the carboxy-terminal domain (CTD) is discussed. The induction of a molten globule-state in the CTD by macromolecular crowding is also considered. The effects of phosphorylation by cyclin-dependent kinases on the structure of the CTD, as well as on chromatin condensation and oligomerization, are described. We also address the extranuclear functions of histone H1, including the interaction with the β-amyloid peptide. This article is part of a Special Issue entitled: Histone H1, edited by Dr. Albert Jordan.
•H1 terminal domains are intrinsically disordered regions which fold upon DNA interaction.•Post-translational modifications can modulate H1 structure and function.•Histone H1 can perform extranuclear functions associated with the immune system and with Alzheimer's disease.</description><identifier>ISSN: 1874-9399</identifier><identifier>ISSN: 0006-3002</identifier><identifier>EISSN: 1876-4320</identifier><identifier>DOI: 10.1016/j.bbagrm.2015.09.009</identifier><identifier>PMID: 26415976</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Charge neutralization ; Chromatin - chemistry ; Chromatin condensation ; Folding ; H1 phosphorylation ; Histones - chemistry ; Histones - physiology ; Humans ; Hydrophobic interactions ; Protein Folding ; Protein Structure, Tertiary ; Structural domains of H1</subject><ispartof>Biochimica et biophysica acta, 2016-03, Vol.1859 (3), p.444-454</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-e2b3c8d5b042f8c995730bdeb453e63bed08db67491aca7d11a3a7f7bd2a12fd3</citedby><cites>FETCH-LOGICAL-c395t-e2b3c8d5b042f8c995730bdeb453e63bed08db67491aca7d11a3a7f7bd2a12fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1874939915002035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26415976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roque, Alicia</creatorcontrib><creatorcontrib>Ponte, Inma</creatorcontrib><creatorcontrib>Suau, Pedro</creatorcontrib><title>Interplay between histone H1 structure and function</title><title>Biochimica et biophysica acta</title><addtitle>Biochim Biophys Acta</addtitle><description>H1 linker histones are involved both in the maintenance of higher-order chromatin structure and in gene regulation. Histone H1 exists in multiple isoforms, is evolutionarily variable and undergoes a large variety of post-translational modifications. We review recent progress in the understanding of the folding and structure of histone H1 domains with an emphasis on the interactions with DNA. The importance of intrinsic disorder and hydrophobic interactions in the folding and function of the carboxy-terminal domain (CTD) is discussed. The induction of a molten globule-state in the CTD by macromolecular crowding is also considered. The effects of phosphorylation by cyclin-dependent kinases on the structure of the CTD, as well as on chromatin condensation and oligomerization, are described. We also address the extranuclear functions of histone H1, including the interaction with the β-amyloid peptide. This article is part of a Special Issue entitled: Histone H1, edited by Dr. Albert Jordan.
•H1 terminal domains are intrinsically disordered regions which fold upon DNA interaction.•Post-translational modifications can modulate H1 structure and function.•Histone H1 can perform extranuclear functions associated with the immune system and with Alzheimer's disease.</description><subject>Animals</subject><subject>Charge neutralization</subject><subject>Chromatin - chemistry</subject><subject>Chromatin condensation</subject><subject>Folding</subject><subject>H1 phosphorylation</subject><subject>Histones - chemistry</subject><subject>Histones - physiology</subject><subject>Humans</subject><subject>Hydrophobic interactions</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>Structural domains of H1</subject><issn>1874-9399</issn><issn>0006-3002</issn><issn>1876-4320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEtLxDAUhYMojq9_INKlm9abpE17N4KILxDc6DrkcasdZtoxSRX_vdUZXYqrexffOQc-xo45FBy4OpsX1prnsCwE8KoALABwi-3xplZ5KQVsf_9ljhJxxvZjnAMoLgB22UyokldYqz0m7_pEYbUwH5ml9E7UZy9dTENP2S3PYgqjS2OgzPQ-a8fepW7oD9lOaxaRjjb3gD1dXz1e3ub3Dzd3lxf3uZNYpZyEla7xlYVStI1DrGoJ1pMtK0lKWvLQeKvqErlxpvacG2nqtrZeGC5aLw_Y6bp3FYbXkWLSyy46WixMT8MYNa8RsMISm3-gChVHEHJCyzXqwhBjoFavQrc04UNz0F9m9VyvzeovsxpQT2an2MlmYbRL8r-hH5UTcL4GaFLy1lHQ0XXUO_JdIJe0H7q_Fz4BR22LHQ</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Roque, Alicia</creator><creator>Ponte, Inma</creator><creator>Suau, Pedro</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201603</creationdate><title>Interplay between histone H1 structure and function</title><author>Roque, Alicia ; Ponte, Inma ; Suau, Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-e2b3c8d5b042f8c995730bdeb453e63bed08db67491aca7d11a3a7f7bd2a12fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Charge neutralization</topic><topic>Chromatin - chemistry</topic><topic>Chromatin condensation</topic><topic>Folding</topic><topic>H1 phosphorylation</topic><topic>Histones - chemistry</topic><topic>Histones - physiology</topic><topic>Humans</topic><topic>Hydrophobic interactions</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>Structural domains of H1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roque, Alicia</creatorcontrib><creatorcontrib>Ponte, Inma</creatorcontrib><creatorcontrib>Suau, Pedro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Biochimica et biophysica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roque, Alicia</au><au>Ponte, Inma</au><au>Suau, Pedro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay between histone H1 structure and function</atitle><jtitle>Biochimica et biophysica acta</jtitle><addtitle>Biochim Biophys Acta</addtitle><date>2016-03</date><risdate>2016</risdate><volume>1859</volume><issue>3</issue><spage>444</spage><epage>454</epage><pages>444-454</pages><issn>1874-9399</issn><issn>0006-3002</issn><eissn>1876-4320</eissn><abstract>H1 linker histones are involved both in the maintenance of higher-order chromatin structure and in gene regulation. Histone H1 exists in multiple isoforms, is evolutionarily variable and undergoes a large variety of post-translational modifications. We review recent progress in the understanding of the folding and structure of histone H1 domains with an emphasis on the interactions with DNA. The importance of intrinsic disorder and hydrophobic interactions in the folding and function of the carboxy-terminal domain (CTD) is discussed. The induction of a molten globule-state in the CTD by macromolecular crowding is also considered. The effects of phosphorylation by cyclin-dependent kinases on the structure of the CTD, as well as on chromatin condensation and oligomerization, are described. We also address the extranuclear functions of histone H1, including the interaction with the β-amyloid peptide. This article is part of a Special Issue entitled: Histone H1, edited by Dr. Albert Jordan.
•H1 terminal domains are intrinsically disordered regions which fold upon DNA interaction.•Post-translational modifications can modulate H1 structure and function.•Histone H1 can perform extranuclear functions associated with the immune system and with Alzheimer's disease.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26415976</pmid><doi>10.1016/j.bbagrm.2015.09.009</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1874-9399 |
ispartof | Biochimica et biophysica acta, 2016-03, Vol.1859 (3), p.444-454 |
issn | 1874-9399 0006-3002 1876-4320 |
language | eng |
recordid | cdi_proquest_miscellaneous_1790959498 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Animals Charge neutralization Chromatin - chemistry Chromatin condensation Folding H1 phosphorylation Histones - chemistry Histones - physiology Humans Hydrophobic interactions Protein Folding Protein Structure, Tertiary Structural domains of H1 |
title | Interplay between histone H1 structure and function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20between%20histone%20H1%20structure%20and%20function&rft.jtitle=Biochimica%20et%20biophysica%20acta&rft.au=Roque,%20Alicia&rft.date=2016-03&rft.volume=1859&rft.issue=3&rft.spage=444&rft.epage=454&rft.pages=444-454&rft.issn=1874-9399&rft.eissn=1876-4320&rft_id=info:doi/10.1016/j.bbagrm.2015.09.009&rft_dat=%3Cproquest_cross%3E1790959498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1769619023&rft_id=info:pmid/26415976&rft_els_id=S1874939915002035&rfr_iscdi=true |