Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae

Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2016-05, Vol.35, p.38-45
Hauptverfasser: Song, Ji-Yoon, Park, Joon-Song, Kang, Chang Duk, Cho, Hwa-Young, Yang, Dongsik, Lee, Seunghyun, Cho, Kwang Myung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue
container_start_page 38
container_title Metabolic engineering
container_volume 35
creator Song, Ji-Yoon
Park, Joon-Song
Kang, Chang Duk
Cho, Hwa-Young
Yang, Dongsik
Lee, Seunghyun
Cho, Kwang Myung
description Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL−1h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast. •Deletion of ADH1 increases yield but reduces titer of lactate production in yeast.•Expression of bacterial A-ALD increases growth and glucose consumption in Δadh1.•Acetyl-CoA pool is enhanced by expression of A-ALD in lactate producing yeast.•Alternative acetyl-CoA synthetic pathway improves lactate productivity in yeast.
doi_str_mv 10.1016/j.ymben.2015.09.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790954833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717615001160</els_id><sourcerecordid>1777986303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-c5d765c1a1069efec6d27eaf5822fd8ef58a6b99853e49341f8cd469773244e3</originalsourceid><addsrcrecordid>eNqNkTtvFDEURi0EIiHwC5CQS5oZ7PG7oIhWPCJFoiC95bXvaL2aGS-2d9H8e7xsCB2iul9x7kP3IPSWkp4SKj_s-3XewtIPhIqemJ4Q-QxdU2Jkp6jmz5-yklfoVSl7QigVhr5EV4NkmgtFrlG9W2pO4ehrTAtOI3Z463yFHN2EnYe6Tt0m3eKyLnUHJRZ8cHX30604zoecTlDw1PjoGxwDPvydFRf83Xm_cznNq2-chwynWKKD1-jF6KYCbx7rDXr4_Olh87W7__blbnN733kudO28CEoKTx0l0sAIXoZBgRuFHoYxaGjBya0xWjDghnE6ah-4NEqxgXNgN-j9ZWy76scRSrVzLB6myS2QjsVSZYgRXDP2H6hSRktGzii7oD6nUjKM9pDj7PJqKbFnMXZvf4uxZzGWGNvEtK53jwuO2xnCU88fEw34eAGgPeQUIdviIyweQszgqw0p_nPBL0itodw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777986303</pqid></control><display><type>article</type><title>Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Song, Ji-Yoon ; Park, Joon-Song ; Kang, Chang Duk ; Cho, Hwa-Young ; Yang, Dongsik ; Lee, Seunghyun ; Cho, Kwang Myung</creator><creatorcontrib>Song, Ji-Yoon ; Park, Joon-Song ; Kang, Chang Duk ; Cho, Hwa-Young ; Yang, Dongsik ; Lee, Seunghyun ; Cho, Kwang Myung</creatorcontrib><description>Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL−1h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast. •Deletion of ADH1 increases yield but reduces titer of lactate production in yeast.•Expression of bacterial A-ALD increases growth and glucose consumption in Δadh1.•Acetyl-CoA pool is enhanced by expression of A-ALD in lactate producing yeast.•Alternative acetyl-CoA synthetic pathway improves lactate productivity in yeast.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2015.09.006</identifier><identifier>PMID: 26384570</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Acetyl Coenzyme A - biosynthesis ; Acetyl Coenzyme A - genetics ; Acetyl-CoA ; Acetylating acetaldehyde dehydrogenase ; Alcohol dehydrogenase ; Aldehyde Oxidoreductases - biosynthesis ; Aldehyde Oxidoreductases - genetics ; Bacteria ; Escherichia ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - biosynthesis ; Escherichia coli Proteins - genetics ; Lactic acid ; Lactic Acid - biosynthesis ; Metabolic engineering ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism</subject><ispartof>Metabolic engineering, 2016-05, Vol.35, p.38-45</ispartof><rights>2016</rights><rights>Copyright © 2016. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-c5d765c1a1069efec6d27eaf5822fd8ef58a6b99853e49341f8cd469773244e3</citedby><cites>FETCH-LOGICAL-c458t-c5d765c1a1069efec6d27eaf5822fd8ef58a6b99853e49341f8cd469773244e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1096717615001160$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26384570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Ji-Yoon</creatorcontrib><creatorcontrib>Park, Joon-Song</creatorcontrib><creatorcontrib>Kang, Chang Duk</creatorcontrib><creatorcontrib>Cho, Hwa-Young</creatorcontrib><creatorcontrib>Yang, Dongsik</creatorcontrib><creatorcontrib>Lee, Seunghyun</creatorcontrib><creatorcontrib>Cho, Kwang Myung</creatorcontrib><title>Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL−1h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast. •Deletion of ADH1 increases yield but reduces titer of lactate production in yeast.•Expression of bacterial A-ALD increases growth and glucose consumption in Δadh1.•Acetyl-CoA pool is enhanced by expression of A-ALD in lactate producing yeast.•Alternative acetyl-CoA synthetic pathway improves lactate productivity in yeast.</description><subject>Acetyl Coenzyme A - biosynthesis</subject><subject>Acetyl Coenzyme A - genetics</subject><subject>Acetyl-CoA</subject><subject>Acetylating acetaldehyde dehydrogenase</subject><subject>Alcohol dehydrogenase</subject><subject>Aldehyde Oxidoreductases - biosynthesis</subject><subject>Aldehyde Oxidoreductases - genetics</subject><subject>Bacteria</subject><subject>Escherichia</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - biosynthesis</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Lactic acid</subject><subject>Lactic Acid - biosynthesis</subject><subject>Metabolic engineering</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkTtvFDEURi0EIiHwC5CQS5oZ7PG7oIhWPCJFoiC95bXvaL2aGS-2d9H8e7xsCB2iul9x7kP3IPSWkp4SKj_s-3XewtIPhIqemJ4Q-QxdU2Jkp6jmz5-yklfoVSl7QigVhr5EV4NkmgtFrlG9W2pO4ehrTAtOI3Z463yFHN2EnYe6Tt0m3eKyLnUHJRZ8cHX30604zoecTlDw1PjoGxwDPvydFRf83Xm_cznNq2-chwynWKKD1-jF6KYCbx7rDXr4_Olh87W7__blbnN733kudO28CEoKTx0l0sAIXoZBgRuFHoYxaGjBya0xWjDghnE6ah-4NEqxgXNgN-j9ZWy76scRSrVzLB6myS2QjsVSZYgRXDP2H6hSRktGzii7oD6nUjKM9pDj7PJqKbFnMXZvf4uxZzGWGNvEtK53jwuO2xnCU88fEw34eAGgPeQUIdviIyweQszgqw0p_nPBL0itodw</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Song, Ji-Yoon</creator><creator>Park, Joon-Song</creator><creator>Kang, Chang Duk</creator><creator>Cho, Hwa-Young</creator><creator>Yang, Dongsik</creator><creator>Lee, Seunghyun</creator><creator>Cho, Kwang Myung</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7QO</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201605</creationdate><title>Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae</title><author>Song, Ji-Yoon ; Park, Joon-Song ; Kang, Chang Duk ; Cho, Hwa-Young ; Yang, Dongsik ; Lee, Seunghyun ; Cho, Kwang Myung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-c5d765c1a1069efec6d27eaf5822fd8ef58a6b99853e49341f8cd469773244e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetyl Coenzyme A - biosynthesis</topic><topic>Acetyl Coenzyme A - genetics</topic><topic>Acetyl-CoA</topic><topic>Acetylating acetaldehyde dehydrogenase</topic><topic>Alcohol dehydrogenase</topic><topic>Aldehyde Oxidoreductases - biosynthesis</topic><topic>Aldehyde Oxidoreductases - genetics</topic><topic>Bacteria</topic><topic>Escherichia</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - biosynthesis</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Lactic acid</topic><topic>Lactic Acid - biosynthesis</topic><topic>Metabolic engineering</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Ji-Yoon</creatorcontrib><creatorcontrib>Park, Joon-Song</creatorcontrib><creatorcontrib>Kang, Chang Duk</creatorcontrib><creatorcontrib>Cho, Hwa-Young</creatorcontrib><creatorcontrib>Yang, Dongsik</creatorcontrib><creatorcontrib>Lee, Seunghyun</creatorcontrib><creatorcontrib>Cho, Kwang Myung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Ji-Yoon</au><au>Park, Joon-Song</au><au>Kang, Chang Duk</au><au>Cho, Hwa-Young</au><au>Yang, Dongsik</au><au>Lee, Seunghyun</au><au>Cho, Kwang Myung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2016-05</date><risdate>2016</risdate><volume>35</volume><spage>38</spage><epage>45</epage><pages>38-45</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL−1h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast. •Deletion of ADH1 increases yield but reduces titer of lactate production in yeast.•Expression of bacterial A-ALD increases growth and glucose consumption in Δadh1.•Acetyl-CoA pool is enhanced by expression of A-ALD in lactate producing yeast.•Alternative acetyl-CoA synthetic pathway improves lactate productivity in yeast.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>26384570</pmid><doi>10.1016/j.ymben.2015.09.006</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2016-05, Vol.35, p.38-45
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_1790954833
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acetyl Coenzyme A - biosynthesis
Acetyl Coenzyme A - genetics
Acetyl-CoA
Acetylating acetaldehyde dehydrogenase
Alcohol dehydrogenase
Aldehyde Oxidoreductases - biosynthesis
Aldehyde Oxidoreductases - genetics
Bacteria
Escherichia
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli Proteins - biosynthesis
Escherichia coli Proteins - genetics
Lactic acid
Lactic Acid - biosynthesis
Metabolic engineering
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
title Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20of%20a%20bacterial%20acetyl-CoA%20synthesis%20pathway%20improves%20lactic%20acid%20production%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Metabolic%20engineering&rft.au=Song,%20Ji-Yoon&rft.date=2016-05&rft.volume=35&rft.spage=38&rft.epage=45&rft.pages=38-45&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2015.09.006&rft_dat=%3Cproquest_cross%3E1777986303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777986303&rft_id=info:pmid/26384570&rft_els_id=S1096717615001160&rfr_iscdi=true