Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae
Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase t...
Gespeichert in:
Veröffentlicht in: | Metabolic engineering 2016-05, Vol.35, p.38-45 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | |
container_start_page | 38 |
container_title | Metabolic engineering |
container_volume | 35 |
creator | Song, Ji-Yoon Park, Joon-Song Kang, Chang Duk Cho, Hwa-Young Yang, Dongsik Lee, Seunghyun Cho, Kwang Myung |
description | Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL−1h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.
•Deletion of ADH1 increases yield but reduces titer of lactate production in yeast.•Expression of bacterial A-ALD increases growth and glucose consumption in Δadh1.•Acetyl-CoA pool is enhanced by expression of A-ALD in lactate producing yeast.•Alternative acetyl-CoA synthetic pathway improves lactate productivity in yeast. |
doi_str_mv | 10.1016/j.ymben.2015.09.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790954833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717615001160</els_id><sourcerecordid>1777986303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-c5d765c1a1069efec6d27eaf5822fd8ef58a6b99853e49341f8cd469773244e3</originalsourceid><addsrcrecordid>eNqNkTtvFDEURi0EIiHwC5CQS5oZ7PG7oIhWPCJFoiC95bXvaL2aGS-2d9H8e7xsCB2iul9x7kP3IPSWkp4SKj_s-3XewtIPhIqemJ4Q-QxdU2Jkp6jmz5-yklfoVSl7QigVhr5EV4NkmgtFrlG9W2pO4ehrTAtOI3Z463yFHN2EnYe6Tt0m3eKyLnUHJRZ8cHX30604zoecTlDw1PjoGxwDPvydFRf83Xm_cznNq2-chwynWKKD1-jF6KYCbx7rDXr4_Olh87W7__blbnN733kudO28CEoKTx0l0sAIXoZBgRuFHoYxaGjBya0xWjDghnE6ah-4NEqxgXNgN-j9ZWy76scRSrVzLB6myS2QjsVSZYgRXDP2H6hSRktGzii7oD6nUjKM9pDj7PJqKbFnMXZvf4uxZzGWGNvEtK53jwuO2xnCU88fEw34eAGgPeQUIdviIyweQszgqw0p_nPBL0itodw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777986303</pqid></control><display><type>article</type><title>Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Song, Ji-Yoon ; Park, Joon-Song ; Kang, Chang Duk ; Cho, Hwa-Young ; Yang, Dongsik ; Lee, Seunghyun ; Cho, Kwang Myung</creator><creatorcontrib>Song, Ji-Yoon ; Park, Joon-Song ; Kang, Chang Duk ; Cho, Hwa-Young ; Yang, Dongsik ; Lee, Seunghyun ; Cho, Kwang Myung</creatorcontrib><description>Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL−1h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.
•Deletion of ADH1 increases yield but reduces titer of lactate production in yeast.•Expression of bacterial A-ALD increases growth and glucose consumption in Δadh1.•Acetyl-CoA pool is enhanced by expression of A-ALD in lactate producing yeast.•Alternative acetyl-CoA synthetic pathway improves lactate productivity in yeast.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2015.09.006</identifier><identifier>PMID: 26384570</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Acetyl Coenzyme A - biosynthesis ; Acetyl Coenzyme A - genetics ; Acetyl-CoA ; Acetylating acetaldehyde dehydrogenase ; Alcohol dehydrogenase ; Aldehyde Oxidoreductases - biosynthesis ; Aldehyde Oxidoreductases - genetics ; Bacteria ; Escherichia ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli Proteins - biosynthesis ; Escherichia coli Proteins - genetics ; Lactic acid ; Lactic Acid - biosynthesis ; Metabolic engineering ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism</subject><ispartof>Metabolic engineering, 2016-05, Vol.35, p.38-45</ispartof><rights>2016</rights><rights>Copyright © 2016. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-c5d765c1a1069efec6d27eaf5822fd8ef58a6b99853e49341f8cd469773244e3</citedby><cites>FETCH-LOGICAL-c458t-c5d765c1a1069efec6d27eaf5822fd8ef58a6b99853e49341f8cd469773244e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1096717615001160$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26384570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Ji-Yoon</creatorcontrib><creatorcontrib>Park, Joon-Song</creatorcontrib><creatorcontrib>Kang, Chang Duk</creatorcontrib><creatorcontrib>Cho, Hwa-Young</creatorcontrib><creatorcontrib>Yang, Dongsik</creatorcontrib><creatorcontrib>Lee, Seunghyun</creatorcontrib><creatorcontrib>Cho, Kwang Myung</creatorcontrib><title>Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL−1h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.
•Deletion of ADH1 increases yield but reduces titer of lactate production in yeast.•Expression of bacterial A-ALD increases growth and glucose consumption in Δadh1.•Acetyl-CoA pool is enhanced by expression of A-ALD in lactate producing yeast.•Alternative acetyl-CoA synthetic pathway improves lactate productivity in yeast.</description><subject>Acetyl Coenzyme A - biosynthesis</subject><subject>Acetyl Coenzyme A - genetics</subject><subject>Acetyl-CoA</subject><subject>Acetylating acetaldehyde dehydrogenase</subject><subject>Alcohol dehydrogenase</subject><subject>Aldehyde Oxidoreductases - biosynthesis</subject><subject>Aldehyde Oxidoreductases - genetics</subject><subject>Bacteria</subject><subject>Escherichia</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - biosynthesis</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Lactic acid</subject><subject>Lactic Acid - biosynthesis</subject><subject>Metabolic engineering</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkTtvFDEURi0EIiHwC5CQS5oZ7PG7oIhWPCJFoiC95bXvaL2aGS-2d9H8e7xsCB2iul9x7kP3IPSWkp4SKj_s-3XewtIPhIqemJ4Q-QxdU2Jkp6jmz5-yklfoVSl7QigVhr5EV4NkmgtFrlG9W2pO4ehrTAtOI3Z463yFHN2EnYe6Tt0m3eKyLnUHJRZ8cHX30604zoecTlDw1PjoGxwDPvydFRf83Xm_cznNq2-chwynWKKD1-jF6KYCbx7rDXr4_Olh87W7__blbnN733kudO28CEoKTx0l0sAIXoZBgRuFHoYxaGjBya0xWjDghnE6ah-4NEqxgXNgN-j9ZWy76scRSrVzLB6myS2QjsVSZYgRXDP2H6hSRktGzii7oD6nUjKM9pDj7PJqKbFnMXZvf4uxZzGWGNvEtK53jwuO2xnCU88fEw34eAGgPeQUIdviIyweQszgqw0p_nPBL0itodw</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Song, Ji-Yoon</creator><creator>Park, Joon-Song</creator><creator>Kang, Chang Duk</creator><creator>Cho, Hwa-Young</creator><creator>Yang, Dongsik</creator><creator>Lee, Seunghyun</creator><creator>Cho, Kwang Myung</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7QO</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201605</creationdate><title>Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae</title><author>Song, Ji-Yoon ; Park, Joon-Song ; Kang, Chang Duk ; Cho, Hwa-Young ; Yang, Dongsik ; Lee, Seunghyun ; Cho, Kwang Myung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-c5d765c1a1069efec6d27eaf5822fd8ef58a6b99853e49341f8cd469773244e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acetyl Coenzyme A - biosynthesis</topic><topic>Acetyl Coenzyme A - genetics</topic><topic>Acetyl-CoA</topic><topic>Acetylating acetaldehyde dehydrogenase</topic><topic>Alcohol dehydrogenase</topic><topic>Aldehyde Oxidoreductases - biosynthesis</topic><topic>Aldehyde Oxidoreductases - genetics</topic><topic>Bacteria</topic><topic>Escherichia</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - biosynthesis</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Lactic acid</topic><topic>Lactic Acid - biosynthesis</topic><topic>Metabolic engineering</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Ji-Yoon</creatorcontrib><creatorcontrib>Park, Joon-Song</creatorcontrib><creatorcontrib>Kang, Chang Duk</creatorcontrib><creatorcontrib>Cho, Hwa-Young</creatorcontrib><creatorcontrib>Yang, Dongsik</creatorcontrib><creatorcontrib>Lee, Seunghyun</creatorcontrib><creatorcontrib>Cho, Kwang Myung</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Ji-Yoon</au><au>Park, Joon-Song</au><au>Kang, Chang Duk</au><au>Cho, Hwa-Young</au><au>Yang, Dongsik</au><au>Lee, Seunghyun</au><au>Cho, Kwang Myung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2016-05</date><risdate>2016</risdate><volume>35</volume><spage>38</spage><epage>45</epage><pages>38-45</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142g/L with production yield of 0.89g/g and productivity of 3.55gL−1h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.
•Deletion of ADH1 increases yield but reduces titer of lactate production in yeast.•Expression of bacterial A-ALD increases growth and glucose consumption in Δadh1.•Acetyl-CoA pool is enhanced by expression of A-ALD in lactate producing yeast.•Alternative acetyl-CoA synthetic pathway improves lactate productivity in yeast.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>26384570</pmid><doi>10.1016/j.ymben.2015.09.006</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-7176 |
ispartof | Metabolic engineering, 2016-05, Vol.35, p.38-45 |
issn | 1096-7176 1096-7184 |
language | eng |
recordid | cdi_proquest_miscellaneous_1790954833 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Acetyl Coenzyme A - biosynthesis Acetyl Coenzyme A - genetics Acetyl-CoA Acetylating acetaldehyde dehydrogenase Alcohol dehydrogenase Aldehyde Oxidoreductases - biosynthesis Aldehyde Oxidoreductases - genetics Bacteria Escherichia Escherichia coli - enzymology Escherichia coli - genetics Escherichia coli Proteins - biosynthesis Escherichia coli Proteins - genetics Lactic acid Lactic Acid - biosynthesis Metabolic engineering Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism |
title | Introduction of a bacterial acetyl-CoA synthesis pathway improves lactic acid production in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Introduction%20of%20a%20bacterial%20acetyl-CoA%20synthesis%20pathway%20improves%20lactic%20acid%20production%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Metabolic%20engineering&rft.au=Song,%20Ji-Yoon&rft.date=2016-05&rft.volume=35&rft.spage=38&rft.epage=45&rft.pages=38-45&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2015.09.006&rft_dat=%3Cproquest_cross%3E1777986303%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777986303&rft_id=info:pmid/26384570&rft_els_id=S1096717615001160&rfr_iscdi=true |