Sorption of Cadmium(II) and Zinc(II) from Aqueous Solution by Water Treatment Residuals at Different pH Values

Here, we report on the ability of two different water treatment residues, a Fe-based (Fe-WTR) and an Al-based (Al-WTR) ones, to accumulate Cd(II) and Zn(II) from aqueous solutions at different pH values (pH 4.5, 5.5, and 7.0). Fe-WTR showed a greater Zn(II) and Cd(II) sorption capacity than Al-WTR a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water, air, and soil pollution air, and soil pollution, 2015-09, Vol.226 (9), p.1-13, Article 313
Hauptverfasser: Silvetti, Margherita, Castaldi, Paola, Garau, Giovanni, Demurtas, Daniela, Deiana, Salvatore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 9
container_start_page 1
container_title Water, air, and soil pollution
container_volume 226
creator Silvetti, Margherita
Castaldi, Paola
Garau, Giovanni
Demurtas, Daniela
Deiana, Salvatore
description Here, we report on the ability of two different water treatment residues, a Fe-based (Fe-WTR) and an Al-based (Al-WTR) ones, to accumulate Cd(II) and Zn(II) from aqueous solutions at different pH values (pH 4.5, 5.5, and 7.0). Fe-WTR showed a greater Zn(II) and Cd(II) sorption capacity than Al-WTR at all the pH values investigated, in particular at pH 7.0 (e.g., ∼0.200 and ∼0.100 mmol g −1 of Me(II) sorbed by Fe- and Al-WTR at pH 7.0, respectively). The greater capacity of the Fe-WTR to accumulate Me(II) seems to be linked to its higher content of iron and manganese ions and to its higher CEC value compared to Al-WTR. The role of the inorganic and organic fractions of WTRs in metal sorption was also assessed. A higher affinity of Cd(II) with respect to Zn(II) toward functional groups of the organic matter of both WTRs was observed, while Zn(II) showed a stronger association with the inorganic phases. The sorption of both metal ions appeared mainly governed by the formation of inner-sphere surface complexes with the inorganic and organic phases of WTRs, as suggested by the sequential extraction data.
doi_str_mv 10.1007/s11270-015-2578-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790947818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790947818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-99c708ab59155924d3e457a0dbc54bcd855f63ac956869d793ae93377f46f4073</originalsourceid><addsrcrecordid>eNp1kU1LAzEQhoMoWKs_wFvASz2sJptks3Ms9aMFQbBVwUtIdxPZsrupye6h_95s60EE5zLMzPMOM7wIXVJyQwmRt4HSVJKEUJGkQuYJOUIjKiRLUmDpMRoRwiHJQMIpOgthQ2JALkeoXTq_7SrXYmfxTJdN1TeTxeIa67bEH1Vb7AvrXYOnX71xfcBLV_d7xXqH33VnPF55o7vGtB1-MaEqe10HrDt8V1lr_NDezvGbrnsTztGJjVNz8ZPH6PXhfjWbJ0_Pj4vZ9CkpGIcuASgkyfVaABUCUl4yw4XUpFwXgq-LMhfCZkwXILI8g1IC0wYYk9LyzHIi2RhNDnu33sWzQ6eaKhSmrnU7_KCoBAJc5jSP6NUfdON638brIiUFB8oJiRQ9UIV3IXhj1dZXjfY7RYkaHFAHB1R0QA0OqEGTHjQhsu2n8b82_yv6BrRbhtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1775491400</pqid></control><display><type>article</type><title>Sorption of Cadmium(II) and Zinc(II) from Aqueous Solution by Water Treatment Residuals at Different pH Values</title><source>SpringerLink Journals - AutoHoldings</source><creator>Silvetti, Margherita ; Castaldi, Paola ; Garau, Giovanni ; Demurtas, Daniela ; Deiana, Salvatore</creator><creatorcontrib>Silvetti, Margherita ; Castaldi, Paola ; Garau, Giovanni ; Demurtas, Daniela ; Deiana, Salvatore</creatorcontrib><description>Here, we report on the ability of two different water treatment residues, a Fe-based (Fe-WTR) and an Al-based (Al-WTR) ones, to accumulate Cd(II) and Zn(II) from aqueous solutions at different pH values (pH 4.5, 5.5, and 7.0). Fe-WTR showed a greater Zn(II) and Cd(II) sorption capacity than Al-WTR at all the pH values investigated, in particular at pH 7.0 (e.g., ∼0.200 and ∼0.100 mmol g −1 of Me(II) sorbed by Fe- and Al-WTR at pH 7.0, respectively). The greater capacity of the Fe-WTR to accumulate Me(II) seems to be linked to its higher content of iron and manganese ions and to its higher CEC value compared to Al-WTR. The role of the inorganic and organic fractions of WTRs in metal sorption was also assessed. A higher affinity of Cd(II) with respect to Zn(II) toward functional groups of the organic matter of both WTRs was observed, while Zn(II) showed a stronger association with the inorganic phases. The sorption of both metal ions appeared mainly governed by the formation of inner-sphere surface complexes with the inorganic and organic phases of WTRs, as suggested by the sequential extraction data.</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-015-2578-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Aqueous solutions ; Atmospheric Protection/Air Quality Control/Air Pollution ; Bioavailability ; Cadmium ; Climate Change/Climate Change Impacts ; Earth and Environmental Science ; Environment ; Environmental monitoring ; Hydrogeology ; Manganese ; Metals ; Organic matter ; Plant growth ; Soil contamination ; Soil Science &amp; Conservation ; Sorption ; Spectrum analysis ; Toxicity ; Water Quality/Water Pollution ; Water treatment ; Zinc</subject><ispartof>Water, air, and soil pollution, 2015-09, Vol.226 (9), p.1-13, Article 313</ispartof><rights>Springer International Publishing Switzerland 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-99c708ab59155924d3e457a0dbc54bcd855f63ac956869d793ae93377f46f4073</citedby><cites>FETCH-LOGICAL-c349t-99c708ab59155924d3e457a0dbc54bcd855f63ac956869d793ae93377f46f4073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11270-015-2578-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11270-015-2578-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Silvetti, Margherita</creatorcontrib><creatorcontrib>Castaldi, Paola</creatorcontrib><creatorcontrib>Garau, Giovanni</creatorcontrib><creatorcontrib>Demurtas, Daniela</creatorcontrib><creatorcontrib>Deiana, Salvatore</creatorcontrib><title>Sorption of Cadmium(II) and Zinc(II) from Aqueous Solution by Water Treatment Residuals at Different pH Values</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>Here, we report on the ability of two different water treatment residues, a Fe-based (Fe-WTR) and an Al-based (Al-WTR) ones, to accumulate Cd(II) and Zn(II) from aqueous solutions at different pH values (pH 4.5, 5.5, and 7.0). Fe-WTR showed a greater Zn(II) and Cd(II) sorption capacity than Al-WTR at all the pH values investigated, in particular at pH 7.0 (e.g., ∼0.200 and ∼0.100 mmol g −1 of Me(II) sorbed by Fe- and Al-WTR at pH 7.0, respectively). The greater capacity of the Fe-WTR to accumulate Me(II) seems to be linked to its higher content of iron and manganese ions and to its higher CEC value compared to Al-WTR. The role of the inorganic and organic fractions of WTRs in metal sorption was also assessed. A higher affinity of Cd(II) with respect to Zn(II) toward functional groups of the organic matter of both WTRs was observed, while Zn(II) showed a stronger association with the inorganic phases. The sorption of both metal ions appeared mainly governed by the formation of inner-sphere surface complexes with the inorganic and organic phases of WTRs, as suggested by the sequential extraction data.</description><subject>Aqueous solutions</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Bioavailability</subject><subject>Cadmium</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environmental monitoring</subject><subject>Hydrogeology</subject><subject>Manganese</subject><subject>Metals</subject><subject>Organic matter</subject><subject>Plant growth</subject><subject>Soil contamination</subject><subject>Soil Science &amp; Conservation</subject><subject>Sorption</subject><subject>Spectrum analysis</subject><subject>Toxicity</subject><subject>Water Quality/Water Pollution</subject><subject>Water treatment</subject><subject>Zinc</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1LAzEQhoMoWKs_wFvASz2sJptks3Ms9aMFQbBVwUtIdxPZsrupye6h_95s60EE5zLMzPMOM7wIXVJyQwmRt4HSVJKEUJGkQuYJOUIjKiRLUmDpMRoRwiHJQMIpOgthQ2JALkeoXTq_7SrXYmfxTJdN1TeTxeIa67bEH1Vb7AvrXYOnX71xfcBLV_d7xXqH33VnPF55o7vGtB1-MaEqe10HrDt8V1lr_NDezvGbrnsTztGJjVNz8ZPH6PXhfjWbJ0_Pj4vZ9CkpGIcuASgkyfVaABUCUl4yw4XUpFwXgq-LMhfCZkwXILI8g1IC0wYYk9LyzHIi2RhNDnu33sWzQ6eaKhSmrnU7_KCoBAJc5jSP6NUfdON638brIiUFB8oJiRQ9UIV3IXhj1dZXjfY7RYkaHFAHB1R0QA0OqEGTHjQhsu2n8b82_yv6BrRbhtQ</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Silvetti, Margherita</creator><creator>Castaldi, Paola</creator><creator>Garau, Giovanni</creator><creator>Demurtas, Daniela</creator><creator>Deiana, Salvatore</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20150901</creationdate><title>Sorption of Cadmium(II) and Zinc(II) from Aqueous Solution by Water Treatment Residuals at Different pH Values</title><author>Silvetti, Margherita ; Castaldi, Paola ; Garau, Giovanni ; Demurtas, Daniela ; Deiana, Salvatore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-99c708ab59155924d3e457a0dbc54bcd855f63ac956869d793ae93377f46f4073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aqueous solutions</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Bioavailability</topic><topic>Cadmium</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environmental monitoring</topic><topic>Hydrogeology</topic><topic>Manganese</topic><topic>Metals</topic><topic>Organic matter</topic><topic>Plant growth</topic><topic>Soil contamination</topic><topic>Soil Science &amp; Conservation</topic><topic>Sorption</topic><topic>Spectrum analysis</topic><topic>Toxicity</topic><topic>Water Quality/Water Pollution</topic><topic>Water treatment</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silvetti, Margherita</creatorcontrib><creatorcontrib>Castaldi, Paola</creatorcontrib><creatorcontrib>Garau, Giovanni</creatorcontrib><creatorcontrib>Demurtas, Daniela</creatorcontrib><creatorcontrib>Deiana, Salvatore</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silvetti, Margherita</au><au>Castaldi, Paola</au><au>Garau, Giovanni</au><au>Demurtas, Daniela</au><au>Deiana, Salvatore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sorption of Cadmium(II) and Zinc(II) from Aqueous Solution by Water Treatment Residuals at Different pH Values</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2015-09-01</date><risdate>2015</risdate><volume>226</volume><issue>9</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>313</artnum><issn>0049-6979</issn><eissn>1573-2932</eissn><abstract>Here, we report on the ability of two different water treatment residues, a Fe-based (Fe-WTR) and an Al-based (Al-WTR) ones, to accumulate Cd(II) and Zn(II) from aqueous solutions at different pH values (pH 4.5, 5.5, and 7.0). Fe-WTR showed a greater Zn(II) and Cd(II) sorption capacity than Al-WTR at all the pH values investigated, in particular at pH 7.0 (e.g., ∼0.200 and ∼0.100 mmol g −1 of Me(II) sorbed by Fe- and Al-WTR at pH 7.0, respectively). The greater capacity of the Fe-WTR to accumulate Me(II) seems to be linked to its higher content of iron and manganese ions and to its higher CEC value compared to Al-WTR. The role of the inorganic and organic fractions of WTRs in metal sorption was also assessed. A higher affinity of Cd(II) with respect to Zn(II) toward functional groups of the organic matter of both WTRs was observed, while Zn(II) showed a stronger association with the inorganic phases. The sorption of both metal ions appeared mainly governed by the formation of inner-sphere surface complexes with the inorganic and organic phases of WTRs, as suggested by the sequential extraction data.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11270-015-2578-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0049-6979
ispartof Water, air, and soil pollution, 2015-09, Vol.226 (9), p.1-13, Article 313
issn 0049-6979
1573-2932
language eng
recordid cdi_proquest_miscellaneous_1790947818
source SpringerLink Journals - AutoHoldings
subjects Aqueous solutions
Atmospheric Protection/Air Quality Control/Air Pollution
Bioavailability
Cadmium
Climate Change/Climate Change Impacts
Earth and Environmental Science
Environment
Environmental monitoring
Hydrogeology
Manganese
Metals
Organic matter
Plant growth
Soil contamination
Soil Science & Conservation
Sorption
Spectrum analysis
Toxicity
Water Quality/Water Pollution
Water treatment
Zinc
title Sorption of Cadmium(II) and Zinc(II) from Aqueous Solution by Water Treatment Residuals at Different pH Values
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sorption%20of%20Cadmium(II)%20and%20Zinc(II)%20from%20Aqueous%20Solution%20by%20Water%20Treatment%20Residuals%20at%20Different%20pH%20Values&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Silvetti,%20Margherita&rft.date=2015-09-01&rft.volume=226&rft.issue=9&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=313&rft.issn=0049-6979&rft.eissn=1573-2932&rft_id=info:doi/10.1007/s11270-015-2578-0&rft_dat=%3Cproquest_cross%3E1790947818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1775491400&rft_id=info:pmid/&rfr_iscdi=true