Random migration processes between two stochastic epidemic centers

•A simple network of two stochastic epidemic centers coupled by random migration is modeled.•The interaction between susceptible/infected/removed individuals as well as their migration is described by a Markov chain.•The mean field dynamics shows that the host (resident) and guest (visitor) individu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences 2016-04, Vol.274, p.45-57
Hauptverfasser: Sazonov, Igor, Kelbert, Mark, Gravenor, Michael B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue
container_start_page 45
container_title Mathematical biosciences
container_volume 274
creator Sazonov, Igor
Kelbert, Mark
Gravenor, Michael B.
description •A simple network of two stochastic epidemic centers coupled by random migration is modeled.•The interaction between susceptible/infected/removed individuals as well as their migration is described by a Markov chain.•The mean field dynamics shows that the host (resident) and guest (visitor) individuals should be accounted separately.•It is shown that the small initial contagion (SIC) approximation (being much faster in terms of the CPU time than the direct numerical simulation) gives good estimates for the mean value and the standard deviation of number of infective individuals. We consider the epidemic dynamics in stochastic interacting population centers coupled by random migration. Both the epidemic and the migration processes are modeled by Markov chains. We derive explicit formulae for the probability distribution of the migration process, and explore the dependence of outbreak patterns on initial parameters, population sizes and coupling parameters, using analytical and numerical methods. We show the importance of considering the movement of resident and visitor individuals separately. The mean field approximation for a general migration process is derived and an approximate method that allows the computation of statistical moments for networks with highly populated centers is proposed and tested numerically.
doi_str_mv 10.1016/j.mbs.2016.01.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790947188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025556416000225</els_id><sourcerecordid>1790947188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-501db1595077f8115fde4aba923b20315027885e9a7fca4e9d82d871dbf737de3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMotlZ_gBfZo5ddM9lNk8WTFr-gIIieQzaZ1ZTubk1Si__eSKtHEQZmDs_7MjyEnAItgML0YlF0TShYOgsKaWCPjEGKOi-hrPbJmFLGc86n1YgchbCgFATA9JCM2FQKQQUfk-sn3duhyzr36nV0Q5-t_GAwBAxZg3GD2GdxM2QhDuZNh-hMhitnsUuHwT6iD8fkoNXLgCe7PSEvtzfPs_t8_nj3MLua56Zidcw5BdsArzkVopUAvLVY6UbXrGwYLYFTJqTkWGvRGl1hbSWzUqRQK0phsZyQ821v-vB9jSGqzgWDy6XucVgHBaKmdSVAyn-goqxYeoslFLao8UMIHlu18q7T_lMBVd-W1UIly-rbsqKQBlLmbFe_bjq0v4kfrQm43AKYfHw49CoYh71B6zyaqOzg_qj_AuS6jJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773424292</pqid></control><display><type>article</type><title>Random migration processes between two stochastic epidemic centers</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Sazonov, Igor ; Kelbert, Mark ; Gravenor, Michael B.</creator><creatorcontrib>Sazonov, Igor ; Kelbert, Mark ; Gravenor, Michael B.</creatorcontrib><description>•A simple network of two stochastic epidemic centers coupled by random migration is modeled.•The interaction between susceptible/infected/removed individuals as well as their migration is described by a Markov chain.•The mean field dynamics shows that the host (resident) and guest (visitor) individuals should be accounted separately.•It is shown that the small initial contagion (SIC) approximation (being much faster in terms of the CPU time than the direct numerical simulation) gives good estimates for the mean value and the standard deviation of number of infective individuals. We consider the epidemic dynamics in stochastic interacting population centers coupled by random migration. Both the epidemic and the migration processes are modeled by Markov chains. We derive explicit formulae for the probability distribution of the migration process, and explore the dependence of outbreak patterns on initial parameters, population sizes and coupling parameters, using analytical and numerical methods. We show the importance of considering the movement of resident and visitor individuals separately. The mean field approximation for a general migration process is derived and an approximate method that allows the computation of statistical moments for networks with highly populated centers is proposed and tested numerically.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2016.01.011</identifier><identifier>PMID: 26877075</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Communicable Diseases - epidemiology ; Communicable Diseases - transmission ; Computer Simulation ; Epidemic modeling ; Epidemics - statistics &amp; numerical data ; Human Migration - statistics &amp; numerical data ; Humans ; Markov Chains ; Mathematical Concepts ; Models, Biological ; Network interactions ; Population Density ; Population dynamics ; Probability ; Stochastic Processes</subject><ispartof>Mathematical biosciences, 2016-04, Vol.274, p.45-57</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-501db1595077f8115fde4aba923b20315027885e9a7fca4e9d82d871dbf737de3</citedby><cites>FETCH-LOGICAL-c429t-501db1595077f8115fde4aba923b20315027885e9a7fca4e9d82d871dbf737de3</cites><orcidid>0000-0001-6685-2351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mbs.2016.01.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26877075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sazonov, Igor</creatorcontrib><creatorcontrib>Kelbert, Mark</creatorcontrib><creatorcontrib>Gravenor, Michael B.</creatorcontrib><title>Random migration processes between two stochastic epidemic centers</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>•A simple network of two stochastic epidemic centers coupled by random migration is modeled.•The interaction between susceptible/infected/removed individuals as well as their migration is described by a Markov chain.•The mean field dynamics shows that the host (resident) and guest (visitor) individuals should be accounted separately.•It is shown that the small initial contagion (SIC) approximation (being much faster in terms of the CPU time than the direct numerical simulation) gives good estimates for the mean value and the standard deviation of number of infective individuals. We consider the epidemic dynamics in stochastic interacting population centers coupled by random migration. Both the epidemic and the migration processes are modeled by Markov chains. We derive explicit formulae for the probability distribution of the migration process, and explore the dependence of outbreak patterns on initial parameters, population sizes and coupling parameters, using analytical and numerical methods. We show the importance of considering the movement of resident and visitor individuals separately. The mean field approximation for a general migration process is derived and an approximate method that allows the computation of statistical moments for networks with highly populated centers is proposed and tested numerically.</description><subject>Communicable Diseases - epidemiology</subject><subject>Communicable Diseases - transmission</subject><subject>Computer Simulation</subject><subject>Epidemic modeling</subject><subject>Epidemics - statistics &amp; numerical data</subject><subject>Human Migration - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Mathematical Concepts</subject><subject>Models, Biological</subject><subject>Network interactions</subject><subject>Population Density</subject><subject>Population dynamics</subject><subject>Probability</subject><subject>Stochastic Processes</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkE1LAzEQhoMotlZ_gBfZo5ddM9lNk8WTFr-gIIieQzaZ1ZTubk1Si__eSKtHEQZmDs_7MjyEnAItgML0YlF0TShYOgsKaWCPjEGKOi-hrPbJmFLGc86n1YgchbCgFATA9JCM2FQKQQUfk-sn3duhyzr36nV0Q5-t_GAwBAxZg3GD2GdxM2QhDuZNh-hMhitnsUuHwT6iD8fkoNXLgCe7PSEvtzfPs_t8_nj3MLua56Zidcw5BdsArzkVopUAvLVY6UbXrGwYLYFTJqTkWGvRGl1hbSWzUqRQK0phsZyQ821v-vB9jSGqzgWDy6XucVgHBaKmdSVAyn-goqxYeoslFLao8UMIHlu18q7T_lMBVd-W1UIly-rbsqKQBlLmbFe_bjq0v4kfrQm43AKYfHw49CoYh71B6zyaqOzg_qj_AuS6jJI</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Sazonov, Igor</creator><creator>Kelbert, Mark</creator><creator>Gravenor, Michael B.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-6685-2351</orcidid></search><sort><creationdate>201604</creationdate><title>Random migration processes between two stochastic epidemic centers</title><author>Sazonov, Igor ; Kelbert, Mark ; Gravenor, Michael B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-501db1595077f8115fde4aba923b20315027885e9a7fca4e9d82d871dbf737de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Communicable Diseases - epidemiology</topic><topic>Communicable Diseases - transmission</topic><topic>Computer Simulation</topic><topic>Epidemic modeling</topic><topic>Epidemics - statistics &amp; numerical data</topic><topic>Human Migration - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Mathematical Concepts</topic><topic>Models, Biological</topic><topic>Network interactions</topic><topic>Population Density</topic><topic>Population dynamics</topic><topic>Probability</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sazonov, Igor</creatorcontrib><creatorcontrib>Kelbert, Mark</creatorcontrib><creatorcontrib>Gravenor, Michael B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sazonov, Igor</au><au>Kelbert, Mark</au><au>Gravenor, Michael B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random migration processes between two stochastic epidemic centers</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2016-04</date><risdate>2016</risdate><volume>274</volume><spage>45</spage><epage>57</epage><pages>45-57</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>•A simple network of two stochastic epidemic centers coupled by random migration is modeled.•The interaction between susceptible/infected/removed individuals as well as their migration is described by a Markov chain.•The mean field dynamics shows that the host (resident) and guest (visitor) individuals should be accounted separately.•It is shown that the small initial contagion (SIC) approximation (being much faster in terms of the CPU time than the direct numerical simulation) gives good estimates for the mean value and the standard deviation of number of infective individuals. We consider the epidemic dynamics in stochastic interacting population centers coupled by random migration. Both the epidemic and the migration processes are modeled by Markov chains. We derive explicit formulae for the probability distribution of the migration process, and explore the dependence of outbreak patterns on initial parameters, population sizes and coupling parameters, using analytical and numerical methods. We show the importance of considering the movement of resident and visitor individuals separately. The mean field approximation for a general migration process is derived and an approximate method that allows the computation of statistical moments for networks with highly populated centers is proposed and tested numerically.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26877075</pmid><doi>10.1016/j.mbs.2016.01.011</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6685-2351</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5564
ispartof Mathematical biosciences, 2016-04, Vol.274, p.45-57
issn 0025-5564
1879-3134
language eng
recordid cdi_proquest_miscellaneous_1790947188
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Communicable Diseases - epidemiology
Communicable Diseases - transmission
Computer Simulation
Epidemic modeling
Epidemics - statistics & numerical data
Human Migration - statistics & numerical data
Humans
Markov Chains
Mathematical Concepts
Models, Biological
Network interactions
Population Density
Population dynamics
Probability
Stochastic Processes
title Random migration processes between two stochastic epidemic centers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A21%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20migration%20processes%20between%20two%20stochastic%20epidemic%20centers&rft.jtitle=Mathematical%20biosciences&rft.au=Sazonov,%20Igor&rft.date=2016-04&rft.volume=274&rft.spage=45&rft.epage=57&rft.pages=45-57&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2016.01.011&rft_dat=%3Cproquest_cross%3E1790947188%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1773424292&rft_id=info:pmid/26877075&rft_els_id=S0025556416000225&rfr_iscdi=true