On homogeneous ice formation in liquid clouds

Primary ice formation by homogeneous freezing of supercooled cloud droplets in moist adiabatic air parcels is investigated theoretically and by means of numerical simulations. Dependencies of nucleated ice crystal number and size and associated freezing temperatures are systematically studied as fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of the Royal Meteorological Society 2016-04, Vol.142 (696), p.1320-1334
Hauptverfasser: Kärcher, B., Seifert, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1334
container_issue 696
container_start_page 1320
container_title Quarterly journal of the Royal Meteorological Society
container_volume 142
creator Kärcher, B.
Seifert, A.
description Primary ice formation by homogeneous freezing of supercooled cloud droplets in moist adiabatic air parcels is investigated theoretically and by means of numerical simulations. Dependencies of nucleated ice crystal number and size and associated freezing temperatures are systematically studied as functions of updraught speed and cloud droplet number and size. Droplet freezing temperatures range between 235 and 239 K, depending on dynamical forcing and liquid water content. Vertical resolutions on the order of 10 m are required in numerical cloud models to resolve the thin layers in which homogeneous ice formation processes unfold. Only a fraction of droplets freeze in weakly forced clouds. Small‐scale variability in updraught speeds encountered by air parcels containing supercooled cloud droplets results in broad ice crystal number distributions when sampled across a parcel ensemble. The strong dynamical control of ice initiation in tropospheric clouds initiates homogeneous freezing in the presence of heterogeneous ice nuclei even at moderate mean updraught speeds, suggesting that such particles play a limited role in affecting droplet freezing in cold convective cloud outflow regions. These findings have important implications for microphysical and optical properties of condensed‐phase convective detrainment, setting the stage for the evolution of anvil cirrus.
doi_str_mv 10.1002/qj.2735
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790940921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790940921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3555-989339fb3bde25f52a40a75c3a6b7311c1e32c951a681a5f2a996bf1789689e63</originalsourceid><addsrcrecordid>eNp10F9LwzAUBfAgCs4pfoWCDwpSvUmaJnmU4V8GQ1DwLaRZoiltsyYrsm9vt_kk-HRfftxzOAidY7jBAOS2r28Ip-wATXDBeS44fByiCQBluQSQx-gkpRoAGCd8gvJFl32FNnzazoYhZd7YzIXY6rUPXea7rPH94JeZacKwTKfoyOkm2bPfO0XvD_dvs6d8vnh8nt3Nc0MZG3OEpFS6ilZLS5hjRBegOTNUlxWnGBtsKTGSYV0KrJkjWsqycpgLWQppSzpFV_u_qxj6waa1an0ytmn0rqXCXIIsQBI80os_tA5D7MZ2oxKloLQY55iiy70yMaQUrVOr6FsdNwqD2s6m-lptZxvl9V5--8Zu_mPq9WWnfwB6hmpu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786833427</pqid></control><display><type>article</type><title>On homogeneous ice formation in liquid clouds</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><creator>Kärcher, B. ; Seifert, A.</creator><creatorcontrib>Kärcher, B. ; Seifert, A.</creatorcontrib><description>Primary ice formation by homogeneous freezing of supercooled cloud droplets in moist adiabatic air parcels is investigated theoretically and by means of numerical simulations. Dependencies of nucleated ice crystal number and size and associated freezing temperatures are systematically studied as functions of updraught speed and cloud droplet number and size. Droplet freezing temperatures range between 235 and 239 K, depending on dynamical forcing and liquid water content. Vertical resolutions on the order of 10 m are required in numerical cloud models to resolve the thin layers in which homogeneous ice formation processes unfold. Only a fraction of droplets freeze in weakly forced clouds. Small‐scale variability in updraught speeds encountered by air parcels containing supercooled cloud droplets results in broad ice crystal number distributions when sampled across a parcel ensemble. The strong dynamical control of ice initiation in tropospheric clouds initiates homogeneous freezing in the presence of heterogeneous ice nuclei even at moderate mean updraught speeds, suggesting that such particles play a limited role in affecting droplet freezing in cold convective cloud outflow regions. These findings have important implications for microphysical and optical properties of condensed‐phase convective detrainment, setting the stage for the evolution of anvil cirrus.</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.2735</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>cloud physics ; convective outflow ; glaciation ; homogeneous freezing ; Ice</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2016-04, Vol.142 (696), p.1320-1334</ispartof><rights>2016 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3555-989339fb3bde25f52a40a75c3a6b7311c1e32c951a681a5f2a996bf1789689e63</citedby><cites>FETCH-LOGICAL-c3555-989339fb3bde25f52a40a75c3a6b7311c1e32c951a681a5f2a996bf1789689e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqj.2735$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqj.2735$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kärcher, B.</creatorcontrib><creatorcontrib>Seifert, A.</creatorcontrib><title>On homogeneous ice formation in liquid clouds</title><title>Quarterly journal of the Royal Meteorological Society</title><description>Primary ice formation by homogeneous freezing of supercooled cloud droplets in moist adiabatic air parcels is investigated theoretically and by means of numerical simulations. Dependencies of nucleated ice crystal number and size and associated freezing temperatures are systematically studied as functions of updraught speed and cloud droplet number and size. Droplet freezing temperatures range between 235 and 239 K, depending on dynamical forcing and liquid water content. Vertical resolutions on the order of 10 m are required in numerical cloud models to resolve the thin layers in which homogeneous ice formation processes unfold. Only a fraction of droplets freeze in weakly forced clouds. Small‐scale variability in updraught speeds encountered by air parcels containing supercooled cloud droplets results in broad ice crystal number distributions when sampled across a parcel ensemble. The strong dynamical control of ice initiation in tropospheric clouds initiates homogeneous freezing in the presence of heterogeneous ice nuclei even at moderate mean updraught speeds, suggesting that such particles play a limited role in affecting droplet freezing in cold convective cloud outflow regions. These findings have important implications for microphysical and optical properties of condensed‐phase convective detrainment, setting the stage for the evolution of anvil cirrus.</description><subject>cloud physics</subject><subject>convective outflow</subject><subject>glaciation</subject><subject>homogeneous freezing</subject><subject>Ice</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10F9LwzAUBfAgCs4pfoWCDwpSvUmaJnmU4V8GQ1DwLaRZoiltsyYrsm9vt_kk-HRfftxzOAidY7jBAOS2r28Ip-wATXDBeS44fByiCQBluQSQx-gkpRoAGCd8gvJFl32FNnzazoYhZd7YzIXY6rUPXea7rPH94JeZacKwTKfoyOkm2bPfO0XvD_dvs6d8vnh8nt3Nc0MZG3OEpFS6ilZLS5hjRBegOTNUlxWnGBtsKTGSYV0KrJkjWsqycpgLWQppSzpFV_u_qxj6waa1an0ytmn0rqXCXIIsQBI80os_tA5D7MZ2oxKloLQY55iiy70yMaQUrVOr6FsdNwqD2s6m-lptZxvl9V5--8Zu_mPq9WWnfwB6hmpu</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Kärcher, B.</creator><creator>Seifert, A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>201604</creationdate><title>On homogeneous ice formation in liquid clouds</title><author>Kärcher, B. ; Seifert, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3555-989339fb3bde25f52a40a75c3a6b7311c1e32c951a681a5f2a996bf1789689e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>cloud physics</topic><topic>convective outflow</topic><topic>glaciation</topic><topic>homogeneous freezing</topic><topic>Ice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kärcher, B.</creatorcontrib><creatorcontrib>Seifert, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kärcher, B.</au><au>Seifert, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On homogeneous ice formation in liquid clouds</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2016-04</date><risdate>2016</risdate><volume>142</volume><issue>696</issue><spage>1320</spage><epage>1334</epage><pages>1320-1334</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><abstract>Primary ice formation by homogeneous freezing of supercooled cloud droplets in moist adiabatic air parcels is investigated theoretically and by means of numerical simulations. Dependencies of nucleated ice crystal number and size and associated freezing temperatures are systematically studied as functions of updraught speed and cloud droplet number and size. Droplet freezing temperatures range between 235 and 239 K, depending on dynamical forcing and liquid water content. Vertical resolutions on the order of 10 m are required in numerical cloud models to resolve the thin layers in which homogeneous ice formation processes unfold. Only a fraction of droplets freeze in weakly forced clouds. Small‐scale variability in updraught speeds encountered by air parcels containing supercooled cloud droplets results in broad ice crystal number distributions when sampled across a parcel ensemble. The strong dynamical control of ice initiation in tropospheric clouds initiates homogeneous freezing in the presence of heterogeneous ice nuclei even at moderate mean updraught speeds, suggesting that such particles play a limited role in affecting droplet freezing in cold convective cloud outflow regions. These findings have important implications for microphysical and optical properties of condensed‐phase convective detrainment, setting the stage for the evolution of anvil cirrus.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/qj.2735</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-9009
ispartof Quarterly journal of the Royal Meteorological Society, 2016-04, Vol.142 (696), p.1320-1334
issn 0035-9009
1477-870X
language eng
recordid cdi_proquest_miscellaneous_1790940921
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library
subjects cloud physics
convective outflow
glaciation
homogeneous freezing
Ice
title On homogeneous ice formation in liquid clouds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20homogeneous%20ice%20formation%20in%20liquid%20clouds&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=K%C3%A4rcher,%20B.&rft.date=2016-04&rft.volume=142&rft.issue=696&rft.spage=1320&rft.epage=1334&rft.pages=1320-1334&rft.issn=0035-9009&rft.eissn=1477-870X&rft_id=info:doi/10.1002/qj.2735&rft_dat=%3Cproquest_cross%3E1790940921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786833427&rft_id=info:pmid/&rfr_iscdi=true