On homogeneous ice formation in liquid clouds
Primary ice formation by homogeneous freezing of supercooled cloud droplets in moist adiabatic air parcels is investigated theoretically and by means of numerical simulations. Dependencies of nucleated ice crystal number and size and associated freezing temperatures are systematically studied as fun...
Gespeichert in:
Veröffentlicht in: | Quarterly journal of the Royal Meteorological Society 2016-04, Vol.142 (696), p.1320-1334 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1334 |
---|---|
container_issue | 696 |
container_start_page | 1320 |
container_title | Quarterly journal of the Royal Meteorological Society |
container_volume | 142 |
creator | Kärcher, B. Seifert, A. |
description | Primary ice formation by homogeneous freezing of supercooled cloud droplets in moist adiabatic air parcels is investigated theoretically and by means of numerical simulations. Dependencies of nucleated ice crystal number and size and associated freezing temperatures are systematically studied as functions of updraught speed and cloud droplet number and size. Droplet freezing temperatures range between 235 and 239 K, depending on dynamical forcing and liquid water content. Vertical resolutions on the order of 10 m are required in numerical cloud models to resolve the thin layers in which homogeneous ice formation processes unfold. Only a fraction of droplets freeze in weakly forced clouds. Small‐scale variability in updraught speeds encountered by air parcels containing supercooled cloud droplets results in broad ice crystal number distributions when sampled across a parcel ensemble. The strong dynamical control of ice initiation in tropospheric clouds initiates homogeneous freezing in the presence of heterogeneous ice nuclei even at moderate mean updraught speeds, suggesting that such particles play a limited role in affecting droplet freezing in cold convective cloud outflow regions. These findings have important implications for microphysical and optical properties of condensed‐phase convective detrainment, setting the stage for the evolution of anvil cirrus. |
doi_str_mv | 10.1002/qj.2735 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790940921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790940921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3555-989339fb3bde25f52a40a75c3a6b7311c1e32c951a681a5f2a996bf1789689e63</originalsourceid><addsrcrecordid>eNp10F9LwzAUBfAgCs4pfoWCDwpSvUmaJnmU4V8GQ1DwLaRZoiltsyYrsm9vt_kk-HRfftxzOAidY7jBAOS2r28Ip-wATXDBeS44fByiCQBluQSQx-gkpRoAGCd8gvJFl32FNnzazoYhZd7YzIXY6rUPXea7rPH94JeZacKwTKfoyOkm2bPfO0XvD_dvs6d8vnh8nt3Nc0MZG3OEpFS6ilZLS5hjRBegOTNUlxWnGBtsKTGSYV0KrJkjWsqycpgLWQppSzpFV_u_qxj6waa1an0ytmn0rqXCXIIsQBI80os_tA5D7MZ2oxKloLQY55iiy70yMaQUrVOr6FsdNwqD2s6m-lptZxvl9V5--8Zu_mPq9WWnfwB6hmpu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786833427</pqid></control><display><type>article</type><title>On homogeneous ice formation in liquid clouds</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><creator>Kärcher, B. ; Seifert, A.</creator><creatorcontrib>Kärcher, B. ; Seifert, A.</creatorcontrib><description>Primary ice formation by homogeneous freezing of supercooled cloud droplets in moist adiabatic air parcels is investigated theoretically and by means of numerical simulations. Dependencies of nucleated ice crystal number and size and associated freezing temperatures are systematically studied as functions of updraught speed and cloud droplet number and size. Droplet freezing temperatures range between 235 and 239 K, depending on dynamical forcing and liquid water content. Vertical resolutions on the order of 10 m are required in numerical cloud models to resolve the thin layers in which homogeneous ice formation processes unfold. Only a fraction of droplets freeze in weakly forced clouds. Small‐scale variability in updraught speeds encountered by air parcels containing supercooled cloud droplets results in broad ice crystal number distributions when sampled across a parcel ensemble. The strong dynamical control of ice initiation in tropospheric clouds initiates homogeneous freezing in the presence of heterogeneous ice nuclei even at moderate mean updraught speeds, suggesting that such particles play a limited role in affecting droplet freezing in cold convective cloud outflow regions. These findings have important implications for microphysical and optical properties of condensed‐phase convective detrainment, setting the stage for the evolution of anvil cirrus.</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.2735</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>cloud physics ; convective outflow ; glaciation ; homogeneous freezing ; Ice</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2016-04, Vol.142 (696), p.1320-1334</ispartof><rights>2016 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3555-989339fb3bde25f52a40a75c3a6b7311c1e32c951a681a5f2a996bf1789689e63</citedby><cites>FETCH-LOGICAL-c3555-989339fb3bde25f52a40a75c3a6b7311c1e32c951a681a5f2a996bf1789689e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqj.2735$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqj.2735$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kärcher, B.</creatorcontrib><creatorcontrib>Seifert, A.</creatorcontrib><title>On homogeneous ice formation in liquid clouds</title><title>Quarterly journal of the Royal Meteorological Society</title><description>Primary ice formation by homogeneous freezing of supercooled cloud droplets in moist adiabatic air parcels is investigated theoretically and by means of numerical simulations. Dependencies of nucleated ice crystal number and size and associated freezing temperatures are systematically studied as functions of updraught speed and cloud droplet number and size. Droplet freezing temperatures range between 235 and 239 K, depending on dynamical forcing and liquid water content. Vertical resolutions on the order of 10 m are required in numerical cloud models to resolve the thin layers in which homogeneous ice formation processes unfold. Only a fraction of droplets freeze in weakly forced clouds. Small‐scale variability in updraught speeds encountered by air parcels containing supercooled cloud droplets results in broad ice crystal number distributions when sampled across a parcel ensemble. The strong dynamical control of ice initiation in tropospheric clouds initiates homogeneous freezing in the presence of heterogeneous ice nuclei even at moderate mean updraught speeds, suggesting that such particles play a limited role in affecting droplet freezing in cold convective cloud outflow regions. These findings have important implications for microphysical and optical properties of condensed‐phase convective detrainment, setting the stage for the evolution of anvil cirrus.</description><subject>cloud physics</subject><subject>convective outflow</subject><subject>glaciation</subject><subject>homogeneous freezing</subject><subject>Ice</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp10F9LwzAUBfAgCs4pfoWCDwpSvUmaJnmU4V8GQ1DwLaRZoiltsyYrsm9vt_kk-HRfftxzOAidY7jBAOS2r28Ip-wATXDBeS44fByiCQBluQSQx-gkpRoAGCd8gvJFl32FNnzazoYhZd7YzIXY6rUPXea7rPH94JeZacKwTKfoyOkm2bPfO0XvD_dvs6d8vnh8nt3Nc0MZG3OEpFS6ilZLS5hjRBegOTNUlxWnGBtsKTGSYV0KrJkjWsqycpgLWQppSzpFV_u_qxj6waa1an0ytmn0rqXCXIIsQBI80os_tA5D7MZ2oxKloLQY55iiy70yMaQUrVOr6FsdNwqD2s6m-lptZxvl9V5--8Zu_mPq9WWnfwB6hmpu</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Kärcher, B.</creator><creator>Seifert, A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7UA</scope><scope>C1K</scope></search><sort><creationdate>201604</creationdate><title>On homogeneous ice formation in liquid clouds</title><author>Kärcher, B. ; Seifert, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3555-989339fb3bde25f52a40a75c3a6b7311c1e32c951a681a5f2a996bf1789689e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>cloud physics</topic><topic>convective outflow</topic><topic>glaciation</topic><topic>homogeneous freezing</topic><topic>Ice</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kärcher, B.</creatorcontrib><creatorcontrib>Seifert, A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kärcher, B.</au><au>Seifert, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On homogeneous ice formation in liquid clouds</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2016-04</date><risdate>2016</risdate><volume>142</volume><issue>696</issue><spage>1320</spage><epage>1334</epage><pages>1320-1334</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><abstract>Primary ice formation by homogeneous freezing of supercooled cloud droplets in moist adiabatic air parcels is investigated theoretically and by means of numerical simulations. Dependencies of nucleated ice crystal number and size and associated freezing temperatures are systematically studied as functions of updraught speed and cloud droplet number and size. Droplet freezing temperatures range between 235 and 239 K, depending on dynamical forcing and liquid water content. Vertical resolutions on the order of 10 m are required in numerical cloud models to resolve the thin layers in which homogeneous ice formation processes unfold. Only a fraction of droplets freeze in weakly forced clouds. Small‐scale variability in updraught speeds encountered by air parcels containing supercooled cloud droplets results in broad ice crystal number distributions when sampled across a parcel ensemble. The strong dynamical control of ice initiation in tropospheric clouds initiates homogeneous freezing in the presence of heterogeneous ice nuclei even at moderate mean updraught speeds, suggesting that such particles play a limited role in affecting droplet freezing in cold convective cloud outflow regions. These findings have important implications for microphysical and optical properties of condensed‐phase convective detrainment, setting the stage for the evolution of anvil cirrus.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/qj.2735</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9009 |
ispartof | Quarterly journal of the Royal Meteorological Society, 2016-04, Vol.142 (696), p.1320-1334 |
issn | 0035-9009 1477-870X |
language | eng |
recordid | cdi_proquest_miscellaneous_1790940921 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library |
subjects | cloud physics convective outflow glaciation homogeneous freezing Ice |
title | On homogeneous ice formation in liquid clouds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20homogeneous%20ice%20formation%20in%20liquid%20clouds&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=K%C3%A4rcher,%20B.&rft.date=2016-04&rft.volume=142&rft.issue=696&rft.spage=1320&rft.epage=1334&rft.pages=1320-1334&rft.issn=0035-9009&rft.eissn=1477-870X&rft_id=info:doi/10.1002/qj.2735&rft_dat=%3Cproquest_cross%3E1790940921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786833427&rft_id=info:pmid/&rfr_iscdi=true |