Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria
Vinyl chloride (VC) is a carcinogen generated in groundwater by reductive dechlorination of chloroethenes. Under aerobic conditions, etheneotrophs oxidize ethene and VC, while VC-assimilators can use VC as their sole source of carbon and energy. Methanotrophs utilize only methane but can oxidize eth...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2016-04, Vol.50 (7), p.3617-3625 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3625 |
---|---|
container_issue | 7 |
container_start_page | 3617 |
container_title | Environmental science & technology |
container_volume | 50 |
creator | Findlay, Margaret Smoler, Donna F Fogel, Samuel Mattes, Timothy E |
description | Vinyl chloride (VC) is a carcinogen generated in groundwater by reductive dechlorination of chloroethenes. Under aerobic conditions, etheneotrophs oxidize ethene and VC, while VC-assimilators can use VC as their sole source of carbon and energy. Methanotrophs utilize only methane but can oxidize ethene to epoxyethane and VC to chlorooxirane. Microcosms were constructed with groundwater from the Carver site in MA containing these three native microbial types. Methane, ethene, and VC were added to the microcosms singly or as mixtures. In the absence of VC, ethene degraded faster when methane was also present. We hypothesized that methanotroph oxidation of ethene to epoxyethane competed with their use of methane, and that epoxyethane stimulated the activity of starved etheneotrophs by inducing the enzyme alkene monooxygenase. We then developed separate enrichment cultures of Carver methanotrophs and etheneotrophs, and demonstrated that Carver methanotrophs can oxidize ethene to epoxyethane, and that starved Carver etheneotrophs exhibit significantly reduced lag time for ethene utilization when epoxyethane is added. In our groundwater microcosm tests, when all three substrates were present, the rate of VC removal was faster than with either methane or ethene alone, consistent with the idea that methanotrophs stimulate etheneotroph destruction of VC. |
doi_str_mv | 10.1021/acs.est.5b05798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790933675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4032474691</sourcerecordid><originalsourceid>FETCH-LOGICAL-a394t-16c582f6dd14fd3cd1f5df471a32ff146bf575bad78fe56c0d85bdc537654d43</originalsourceid><addsrcrecordid>eNp1kc1LwzAYxoMobk7P3qTgRZBuSdMk7XGOOYUNL0O8lTQfLKNtZtIi--9N2ZwgeHrh5fc878cDwC2CYwQTNOHCj5Vvx6SEhOXZGRgiksCYZASdgyGECMc5ph8DcOX9FkKYYJhdgkFCc5RhBofATJWzpRHRu2n2VTTbVNYZqaKVanlpK-PryDTRwtmukV-8VS5aGeGssL72UbnvuQ1vbOvsbhNceCOjebtRjTq1nrgIMsOvwYXmlVc3xzoC6-f5evYSL98Wr7PpMuY4T9sYUUGyRFMpUaolFhJpInXKEMeJ1iilpSaMlFyyTCtCBZQZKaUgmFGSyhSPwMPBdufsZxd-U9TGC1VVPOzU-QKxHOYYU0YCev8H3drONWG5QGWY5gwjFKjJgQpne--ULnbO1NztCwSLPoQihFD06mMIQXF39O3KWskT__P1ADwegF75O_Mfu2_WKpPp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783697311</pqid></control><display><type>article</type><title>Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Findlay, Margaret ; Smoler, Donna F ; Fogel, Samuel ; Mattes, Timothy E</creator><creatorcontrib>Findlay, Margaret ; Smoler, Donna F ; Fogel, Samuel ; Mattes, Timothy E</creatorcontrib><description>Vinyl chloride (VC) is a carcinogen generated in groundwater by reductive dechlorination of chloroethenes. Under aerobic conditions, etheneotrophs oxidize ethene and VC, while VC-assimilators can use VC as their sole source of carbon and energy. Methanotrophs utilize only methane but can oxidize ethene to epoxyethane and VC to chlorooxirane. Microcosms were constructed with groundwater from the Carver site in MA containing these three native microbial types. Methane, ethene, and VC were added to the microcosms singly or as mixtures. In the absence of VC, ethene degraded faster when methane was also present. We hypothesized that methanotroph oxidation of ethene to epoxyethane competed with their use of methane, and that epoxyethane stimulated the activity of starved etheneotrophs by inducing the enzyme alkene monooxygenase. We then developed separate enrichment cultures of Carver methanotrophs and etheneotrophs, and demonstrated that Carver methanotrophs can oxidize ethene to epoxyethane, and that starved Carver etheneotrophs exhibit significantly reduced lag time for ethene utilization when epoxyethane is added. In our groundwater microcosm tests, when all three substrates were present, the rate of VC removal was faster than with either methane or ethene alone, consistent with the idea that methanotrophs stimulate etheneotroph destruction of VC.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.5b05798</identifier><identifier>PMID: 26918370</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aerobiosis ; Bacteria ; Bacteria - metabolism ; Biodegradation, Environmental ; Carbon ; Ethylenes - metabolism ; Groundwater ; Groundwater - microbiology ; Massachusetts ; Methane ; Methane - metabolism ; Minerals - metabolism ; Oxidation ; Oxidation-Reduction ; Substrates ; Vinyl Chloride - metabolism</subject><ispartof>Environmental science & technology, 2016-04, Vol.50 (7), p.3617-3625</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Apr 5, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a394t-16c582f6dd14fd3cd1f5df471a32ff146bf575bad78fe56c0d85bdc537654d43</citedby><cites>FETCH-LOGICAL-a394t-16c582f6dd14fd3cd1f5df471a32ff146bf575bad78fe56c0d85bdc537654d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.5b05798$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.5b05798$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26918370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Findlay, Margaret</creatorcontrib><creatorcontrib>Smoler, Donna F</creatorcontrib><creatorcontrib>Fogel, Samuel</creatorcontrib><creatorcontrib>Mattes, Timothy E</creatorcontrib><title>Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Vinyl chloride (VC) is a carcinogen generated in groundwater by reductive dechlorination of chloroethenes. Under aerobic conditions, etheneotrophs oxidize ethene and VC, while VC-assimilators can use VC as their sole source of carbon and energy. Methanotrophs utilize only methane but can oxidize ethene to epoxyethane and VC to chlorooxirane. Microcosms were constructed with groundwater from the Carver site in MA containing these three native microbial types. Methane, ethene, and VC were added to the microcosms singly or as mixtures. In the absence of VC, ethene degraded faster when methane was also present. We hypothesized that methanotroph oxidation of ethene to epoxyethane competed with their use of methane, and that epoxyethane stimulated the activity of starved etheneotrophs by inducing the enzyme alkene monooxygenase. We then developed separate enrichment cultures of Carver methanotrophs and etheneotrophs, and demonstrated that Carver methanotrophs can oxidize ethene to epoxyethane, and that starved Carver etheneotrophs exhibit significantly reduced lag time for ethene utilization when epoxyethane is added. In our groundwater microcosm tests, when all three substrates were present, the rate of VC removal was faster than with either methane or ethene alone, consistent with the idea that methanotrophs stimulate etheneotroph destruction of VC.</description><subject>Aerobiosis</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Biodegradation, Environmental</subject><subject>Carbon</subject><subject>Ethylenes - metabolism</subject><subject>Groundwater</subject><subject>Groundwater - microbiology</subject><subject>Massachusetts</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Minerals - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Substrates</subject><subject>Vinyl Chloride - metabolism</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1LwzAYxoMobk7P3qTgRZBuSdMk7XGOOYUNL0O8lTQfLKNtZtIi--9N2ZwgeHrh5fc878cDwC2CYwQTNOHCj5Vvx6SEhOXZGRgiksCYZASdgyGECMc5ph8DcOX9FkKYYJhdgkFCc5RhBofATJWzpRHRu2n2VTTbVNYZqaKVanlpK-PryDTRwtmukV-8VS5aGeGssL72UbnvuQ1vbOvsbhNceCOjebtRjTq1nrgIMsOvwYXmlVc3xzoC6-f5evYSL98Wr7PpMuY4T9sYUUGyRFMpUaolFhJpInXKEMeJ1iilpSaMlFyyTCtCBZQZKaUgmFGSyhSPwMPBdufsZxd-U9TGC1VVPOzU-QKxHOYYU0YCev8H3drONWG5QGWY5gwjFKjJgQpne--ULnbO1NztCwSLPoQihFD06mMIQXF39O3KWskT__P1ADwegF75O_Mfu2_WKpPp</recordid><startdate>20160405</startdate><enddate>20160405</enddate><creator>Findlay, Margaret</creator><creator>Smoler, Donna F</creator><creator>Fogel, Samuel</creator><creator>Mattes, Timothy E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20160405</creationdate><title>Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria</title><author>Findlay, Margaret ; Smoler, Donna F ; Fogel, Samuel ; Mattes, Timothy E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a394t-16c582f6dd14fd3cd1f5df471a32ff146bf575bad78fe56c0d85bdc537654d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerobiosis</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Biodegradation, Environmental</topic><topic>Carbon</topic><topic>Ethylenes - metabolism</topic><topic>Groundwater</topic><topic>Groundwater - microbiology</topic><topic>Massachusetts</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Minerals - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Substrates</topic><topic>Vinyl Chloride - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Findlay, Margaret</creatorcontrib><creatorcontrib>Smoler, Donna F</creatorcontrib><creatorcontrib>Fogel, Samuel</creatorcontrib><creatorcontrib>Mattes, Timothy E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Findlay, Margaret</au><au>Smoler, Donna F</au><au>Fogel, Samuel</au><au>Mattes, Timothy E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2016-04-05</date><risdate>2016</risdate><volume>50</volume><issue>7</issue><spage>3617</spage><epage>3625</epage><pages>3617-3625</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Vinyl chloride (VC) is a carcinogen generated in groundwater by reductive dechlorination of chloroethenes. Under aerobic conditions, etheneotrophs oxidize ethene and VC, while VC-assimilators can use VC as their sole source of carbon and energy. Methanotrophs utilize only methane but can oxidize ethene to epoxyethane and VC to chlorooxirane. Microcosms were constructed with groundwater from the Carver site in MA containing these three native microbial types. Methane, ethene, and VC were added to the microcosms singly or as mixtures. In the absence of VC, ethene degraded faster when methane was also present. We hypothesized that methanotroph oxidation of ethene to epoxyethane competed with their use of methane, and that epoxyethane stimulated the activity of starved etheneotrophs by inducing the enzyme alkene monooxygenase. We then developed separate enrichment cultures of Carver methanotrophs and etheneotrophs, and demonstrated that Carver methanotrophs can oxidize ethene to epoxyethane, and that starved Carver etheneotrophs exhibit significantly reduced lag time for ethene utilization when epoxyethane is added. In our groundwater microcosm tests, when all three substrates were present, the rate of VC removal was faster than with either methane or ethene alone, consistent with the idea that methanotrophs stimulate etheneotroph destruction of VC.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26918370</pmid><doi>10.1021/acs.est.5b05798</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2016-04, Vol.50 (7), p.3617-3625 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1790933675 |
source | MEDLINE; American Chemical Society Journals |
subjects | Aerobiosis Bacteria Bacteria - metabolism Biodegradation, Environmental Carbon Ethylenes - metabolism Groundwater Groundwater - microbiology Massachusetts Methane Methane - metabolism Minerals - metabolism Oxidation Oxidation-Reduction Substrates Vinyl Chloride - metabolism |
title | Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T09%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerobic%20Vinyl%20Chloride%20Metabolism%20in%20Groundwater%20Microcosms%20by%20Methanotrophic%20and%20Etheneotrophic%20Bacteria&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Findlay,%20Margaret&rft.date=2016-04-05&rft.volume=50&rft.issue=7&rft.spage=3617&rft.epage=3625&rft.pages=3617-3625&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/acs.est.5b05798&rft_dat=%3Cproquest_cross%3E4032474691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1783697311&rft_id=info:pmid/26918370&rfr_iscdi=true |