A photic visual cycle of rhodopsin regeneration is dependent on Rgr
During visual excitation, rhodopsin undergoes photoactivation and bleaches to opsin and all-trans-retinal. To regenerate rhodopsin and maintain normal visual sensitivity, the all-trans isomer must be metabolized and reisomerized to produce the chromophore 11-cis-retinal in biochemical steps that con...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2001-07, Vol.28 (3), p.256-260 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 260 |
---|---|
container_issue | 3 |
container_start_page | 256 |
container_title | Nature genetics |
container_volume | 28 |
creator | Fong, Henry K.W Chen, Pu Hao, Wenshan Rife, Lawrence Wang, Xiao Peng Shen, Daiwei Chen, Jeannie Ogden, Thomas Van Boemel, Gretchen B Wu, Lanyin Yang, Mao |
description | During visual excitation, rhodopsin undergoes photoactivation and bleaches to opsin and all-trans-retinal. To regenerate rhodopsin and maintain normal visual sensitivity, the all-trans isomer must be metabolized and reisomerized to produce the chromophore 11-cis-retinal in biochemical steps that constitute the visual cycle and involve the retinal pigment epithelium (RPE; refs. 3-8). A key step in the visual cycle is isomerization of an all-trans retinoid to 11-cis-retinol in the RPE (refs. 9-11). It could be that the retinochrome-like opsins, peropsin, or the retinal G protein-coupled receptor (RGR) opsin12-16 are isomerases in the RPE. In contrast to visual pigments, RGR is bound predominantly to endogenous all-trans-retinal, and irradiation of RGR in vitro results in stereospecific conversion of the bound all-trans isomer to 11-cis-retinal. Here we show that RGR is involved in the formation of 11-cis-retinal in mice and functions in a light-dependent pathway of the rod visual cycle. Mutations in the human gene encoding RGR are associated with retinitis pigmentosa. |
doi_str_mv | 10.1038/90089 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17905557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183436811</galeid><sourcerecordid>A183436811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-81c7a1664430f122435ae422431827d93efd43357a5ad4dd5c2e7fd70d55fa863</originalsourceid><addsrcrecordid>eNqN0ktr3DAQAGBTGpo0zS8oFNPQQA5ONdbD9nFZ2iYQCKSPq1Cl0UbBK7mSXZp_X228ZNmSQ9FhJPFpNEJTFCdALoDQ9mNHSNu9KI6AM1FBA-3LPCcCKkaoOCxep3RPCDBG2lfFIQCjIDpxVCwX5XAXRqfL3y5Nqi_1g-6xDLaMd8GEITlfRlyhx6hGF3zpUmlwQG_Qj2Ve367im-LAqj7hyTYeF98_f_q2vKyub75cLRfXleYcxqoF3SgQgjFKLNQ1o1wh20Ro68Z0FK1hlPJGcWWYMVzX2FjTEMO5Va2gx8XZnHeI4deEaZRrlzT2vfIYpiSh6QjnvMnw_T_wPkzR59pkXde5As5ZRqczWqkepfM2jFHpTUa5gJYyKlqArC6eUXkYXDsdPFqX9_cOnO8dyGbEP-NKTSnJq6-3_29vfuzbD7PVMaQU0cohurWKDxKI3HSAfOyA7N5t3z79XKPZqe2X7xINKmnV26i8dmnnGBFd9-jezs6rcYr4BOZr_gJqkbp5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222664554</pqid></control><display><type>article</type><title>A photic visual cycle of rhodopsin regeneration is dependent on Rgr</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Fong, Henry K.W ; Chen, Pu ; Hao, Wenshan ; Rife, Lawrence ; Wang, Xiao Peng ; Shen, Daiwei ; Chen, Jeannie ; Ogden, Thomas ; Van Boemel, Gretchen B ; Wu, Lanyin ; Yang, Mao</creator><creatorcontrib>Fong, Henry K.W ; Chen, Pu ; Hao, Wenshan ; Rife, Lawrence ; Wang, Xiao Peng ; Shen, Daiwei ; Chen, Jeannie ; Ogden, Thomas ; Van Boemel, Gretchen B ; Wu, Lanyin ; Yang, Mao</creatorcontrib><description>During visual excitation, rhodopsin undergoes photoactivation and bleaches to opsin and all-trans-retinal. To regenerate rhodopsin and maintain normal visual sensitivity, the all-trans isomer must be metabolized and reisomerized to produce the chromophore 11-cis-retinal in biochemical steps that constitute the visual cycle and involve the retinal pigment epithelium (RPE; refs. 3-8). A key step in the visual cycle is isomerization of an all-trans retinoid to 11-cis-retinol in the RPE (refs. 9-11). It could be that the retinochrome-like opsins, peropsin, or the retinal G protein-coupled receptor (RGR) opsin12-16 are isomerases in the RPE. In contrast to visual pigments, RGR is bound predominantly to endogenous all-trans-retinal, and irradiation of RGR in vitro results in stereospecific conversion of the bound all-trans isomer to 11-cis-retinal. Here we show that RGR is involved in the formation of 11-cis-retinal in mice and functions in a light-dependent pathway of the rod visual cycle. Mutations in the human gene encoding RGR are associated with retinitis pigmentosa.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/90089</identifier><identifier>PMID: 11431696</identifier><identifier>CODEN: NGENEC</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>11-cis-Retinal ; Adaptation ; Animals ; Biological and medical sciences ; Cell physiology ; Classical genetics, quantitative genetics, hybrids ; Darkness ; Dose-Response Relationship, Radiation ; Electroretinography ; Eye - metabolism ; Eye - radiation effects ; Eye Proteins - genetics ; Eye Proteins - metabolism ; Fundamental and applied biological sciences. Psychology ; Genetic aspects ; Genetics of eukaryotes. Biological and molecular evolution ; Irradiation ; Light ; Mice ; Mice, Mutant Strains ; Models, Chemical ; Molecular and cellular biology ; Mutation ; Neurosciences ; Photic Stimulation ; Photoactivation ; Photobiology ; Physiological aspects ; pigment epithelium ; Proteins ; Publishing ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Receptors, G-Protein-Coupled ; retinal pigment epithelium ; Retinal Rod Photoreceptor Cells - metabolism ; Retinal Rod Photoreceptor Cells - radiation effects ; Retinaldehyde - metabolism ; Rgr gene ; Rhodopsin ; Rhodopsin - metabolism ; Rhodopsin - radiation effects ; Vertebrata ; Vision, photoreception</subject><ispartof>Nature genetics, 2001-07, Vol.28 (3), p.256-260</ispartof><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2001 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-81c7a1664430f122435ae422431827d93efd43357a5ad4dd5c2e7fd70d55fa863</citedby><cites>FETCH-LOGICAL-c551t-81c7a1664430f122435ae422431827d93efd43357a5ad4dd5c2e7fd70d55fa863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,2728,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14069996$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11431696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fong, Henry K.W</creatorcontrib><creatorcontrib>Chen, Pu</creatorcontrib><creatorcontrib>Hao, Wenshan</creatorcontrib><creatorcontrib>Rife, Lawrence</creatorcontrib><creatorcontrib>Wang, Xiao Peng</creatorcontrib><creatorcontrib>Shen, Daiwei</creatorcontrib><creatorcontrib>Chen, Jeannie</creatorcontrib><creatorcontrib>Ogden, Thomas</creatorcontrib><creatorcontrib>Van Boemel, Gretchen B</creatorcontrib><creatorcontrib>Wu, Lanyin</creatorcontrib><creatorcontrib>Yang, Mao</creatorcontrib><title>A photic visual cycle of rhodopsin regeneration is dependent on Rgr</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><description>During visual excitation, rhodopsin undergoes photoactivation and bleaches to opsin and all-trans-retinal. To regenerate rhodopsin and maintain normal visual sensitivity, the all-trans isomer must be metabolized and reisomerized to produce the chromophore 11-cis-retinal in biochemical steps that constitute the visual cycle and involve the retinal pigment epithelium (RPE; refs. 3-8). A key step in the visual cycle is isomerization of an all-trans retinoid to 11-cis-retinol in the RPE (refs. 9-11). It could be that the retinochrome-like opsins, peropsin, or the retinal G protein-coupled receptor (RGR) opsin12-16 are isomerases in the RPE. In contrast to visual pigments, RGR is bound predominantly to endogenous all-trans-retinal, and irradiation of RGR in vitro results in stereospecific conversion of the bound all-trans isomer to 11-cis-retinal. Here we show that RGR is involved in the formation of 11-cis-retinal in mice and functions in a light-dependent pathway of the rod visual cycle. Mutations in the human gene encoding RGR are associated with retinitis pigmentosa.</description><subject>11-cis-Retinal</subject><subject>Adaptation</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell physiology</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Darkness</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Electroretinography</subject><subject>Eye - metabolism</subject><subject>Eye - radiation effects</subject><subject>Eye Proteins - genetics</subject><subject>Eye Proteins - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic aspects</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Irradiation</subject><subject>Light</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Models, Chemical</subject><subject>Molecular and cellular biology</subject><subject>Mutation</subject><subject>Neurosciences</subject><subject>Photic Stimulation</subject><subject>Photoactivation</subject><subject>Photobiology</subject><subject>Physiological aspects</subject><subject>pigment epithelium</subject><subject>Proteins</subject><subject>Publishing</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Receptors, G-Protein-Coupled</subject><subject>retinal pigment epithelium</subject><subject>Retinal Rod Photoreceptor Cells - metabolism</subject><subject>Retinal Rod Photoreceptor Cells - radiation effects</subject><subject>Retinaldehyde - metabolism</subject><subject>Rgr gene</subject><subject>Rhodopsin</subject><subject>Rhodopsin - metabolism</subject><subject>Rhodopsin - radiation effects</subject><subject>Vertebrata</subject><subject>Vision, photoreception</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0ktr3DAQAGBTGpo0zS8oFNPQQA5ONdbD9nFZ2iYQCKSPq1Cl0UbBK7mSXZp_X228ZNmSQ9FhJPFpNEJTFCdALoDQ9mNHSNu9KI6AM1FBA-3LPCcCKkaoOCxep3RPCDBG2lfFIQCjIDpxVCwX5XAXRqfL3y5Nqi_1g-6xDLaMd8GEITlfRlyhx6hGF3zpUmlwQG_Qj2Ve367im-LAqj7hyTYeF98_f_q2vKyub75cLRfXleYcxqoF3SgQgjFKLNQ1o1wh20Ro68Z0FK1hlPJGcWWYMVzX2FjTEMO5Va2gx8XZnHeI4deEaZRrlzT2vfIYpiSh6QjnvMnw_T_wPkzR59pkXde5As5ZRqczWqkepfM2jFHpTUa5gJYyKlqArC6eUXkYXDsdPFqX9_cOnO8dyGbEP-NKTSnJq6-3_29vfuzbD7PVMaQU0cohurWKDxKI3HSAfOyA7N5t3z79XKPZqe2X7xINKmnV26i8dmnnGBFd9-jezs6rcYr4BOZr_gJqkbp5</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Fong, Henry K.W</creator><creator>Chen, Pu</creator><creator>Hao, Wenshan</creator><creator>Rife, Lawrence</creator><creator>Wang, Xiao Peng</creator><creator>Shen, Daiwei</creator><creator>Chen, Jeannie</creator><creator>Ogden, Thomas</creator><creator>Van Boemel, Gretchen B</creator><creator>Wu, Lanyin</creator><creator>Yang, Mao</creator><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20010701</creationdate><title>A photic visual cycle of rhodopsin regeneration is dependent on Rgr</title><author>Fong, Henry K.W ; Chen, Pu ; Hao, Wenshan ; Rife, Lawrence ; Wang, Xiao Peng ; Shen, Daiwei ; Chen, Jeannie ; Ogden, Thomas ; Van Boemel, Gretchen B ; Wu, Lanyin ; Yang, Mao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-81c7a1664430f122435ae422431827d93efd43357a5ad4dd5c2e7fd70d55fa863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>11-cis-Retinal</topic><topic>Adaptation</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell physiology</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Darkness</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Electroretinography</topic><topic>Eye - metabolism</topic><topic>Eye - radiation effects</topic><topic>Eye Proteins - genetics</topic><topic>Eye Proteins - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic aspects</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Irradiation</topic><topic>Light</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Models, Chemical</topic><topic>Molecular and cellular biology</topic><topic>Mutation</topic><topic>Neurosciences</topic><topic>Photic Stimulation</topic><topic>Photoactivation</topic><topic>Photobiology</topic><topic>Physiological aspects</topic><topic>pigment epithelium</topic><topic>Proteins</topic><topic>Publishing</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Receptors, G-Protein-Coupled</topic><topic>retinal pigment epithelium</topic><topic>Retinal Rod Photoreceptor Cells - metabolism</topic><topic>Retinal Rod Photoreceptor Cells - radiation effects</topic><topic>Retinaldehyde - metabolism</topic><topic>Rgr gene</topic><topic>Rhodopsin</topic><topic>Rhodopsin - metabolism</topic><topic>Rhodopsin - radiation effects</topic><topic>Vertebrata</topic><topic>Vision, photoreception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fong, Henry K.W</creatorcontrib><creatorcontrib>Chen, Pu</creatorcontrib><creatorcontrib>Hao, Wenshan</creatorcontrib><creatorcontrib>Rife, Lawrence</creatorcontrib><creatorcontrib>Wang, Xiao Peng</creatorcontrib><creatorcontrib>Shen, Daiwei</creatorcontrib><creatorcontrib>Chen, Jeannie</creatorcontrib><creatorcontrib>Ogden, Thomas</creatorcontrib><creatorcontrib>Van Boemel, Gretchen B</creatorcontrib><creatorcontrib>Wu, Lanyin</creatorcontrib><creatorcontrib>Yang, Mao</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fong, Henry K.W</au><au>Chen, Pu</au><au>Hao, Wenshan</au><au>Rife, Lawrence</au><au>Wang, Xiao Peng</au><au>Shen, Daiwei</au><au>Chen, Jeannie</au><au>Ogden, Thomas</au><au>Van Boemel, Gretchen B</au><au>Wu, Lanyin</au><au>Yang, Mao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A photic visual cycle of rhodopsin regeneration is dependent on Rgr</atitle><jtitle>Nature genetics</jtitle><addtitle>Nat Genet</addtitle><date>2001-07-01</date><risdate>2001</risdate><volume>28</volume><issue>3</issue><spage>256</spage><epage>260</epage><pages>256-260</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><coden>NGENEC</coden><abstract>During visual excitation, rhodopsin undergoes photoactivation and bleaches to opsin and all-trans-retinal. To regenerate rhodopsin and maintain normal visual sensitivity, the all-trans isomer must be metabolized and reisomerized to produce the chromophore 11-cis-retinal in biochemical steps that constitute the visual cycle and involve the retinal pigment epithelium (RPE; refs. 3-8). A key step in the visual cycle is isomerization of an all-trans retinoid to 11-cis-retinol in the RPE (refs. 9-11). It could be that the retinochrome-like opsins, peropsin, or the retinal G protein-coupled receptor (RGR) opsin12-16 are isomerases in the RPE. In contrast to visual pigments, RGR is bound predominantly to endogenous all-trans-retinal, and irradiation of RGR in vitro results in stereospecific conversion of the bound all-trans isomer to 11-cis-retinal. Here we show that RGR is involved in the formation of 11-cis-retinal in mice and functions in a light-dependent pathway of the rod visual cycle. Mutations in the human gene encoding RGR are associated with retinitis pigmentosa.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><pmid>11431696</pmid><doi>10.1038/90089</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2001-07, Vol.28 (3), p.256-260 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_proquest_miscellaneous_17905557 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 11-cis-Retinal Adaptation Animals Biological and medical sciences Cell physiology Classical genetics, quantitative genetics, hybrids Darkness Dose-Response Relationship, Radiation Electroretinography Eye - metabolism Eye - radiation effects Eye Proteins - genetics Eye Proteins - metabolism Fundamental and applied biological sciences. Psychology Genetic aspects Genetics of eukaryotes. Biological and molecular evolution Irradiation Light Mice Mice, Mutant Strains Models, Chemical Molecular and cellular biology Mutation Neurosciences Photic Stimulation Photoactivation Photobiology Physiological aspects pigment epithelium Proteins Publishing Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism Receptors, G-Protein-Coupled retinal pigment epithelium Retinal Rod Photoreceptor Cells - metabolism Retinal Rod Photoreceptor Cells - radiation effects Retinaldehyde - metabolism Rgr gene Rhodopsin Rhodopsin - metabolism Rhodopsin - radiation effects Vertebrata Vision, photoreception |
title | A photic visual cycle of rhodopsin regeneration is dependent on Rgr |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T07%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20photic%20visual%20cycle%20of%20rhodopsin%20regeneration%20is%20dependent%20on%20Rgr&rft.jtitle=Nature%20genetics&rft.au=Fong,%20Henry%20K.W&rft.date=2001-07-01&rft.volume=28&rft.issue=3&rft.spage=256&rft.epage=260&rft.pages=256-260&rft.issn=1061-4036&rft.eissn=1546-1718&rft.coden=NGENEC&rft_id=info:doi/10.1038/90089&rft_dat=%3Cgale_proqu%3EA183436811%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222664554&rft_id=info:pmid/11431696&rft_galeid=A183436811&rfr_iscdi=true |