Longitudinal Distribution of Ozone and Chlorine in the Human Respiratory Tract: Simulation of Nasal and Oral Breathing with the Single-Path Diffusion Model

In the single-path model of the respiratory system, gas transport occurs within a conduit of progressively increasing cross-sectional and surface areas by a combination of flow, longitudinal dispersion, and lateral absorption. The purpose of this study was to use bolus inhalation data previously obt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology and applied pharmacology 2001-06, Vol.173 (3), p.137-145
Hauptverfasser: Bush, Michele L., Zhang, Wei, Ben-Jebria, Abdellaziz, Ultman, James S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue 3
container_start_page 137
container_title Toxicology and applied pharmacology
container_volume 173
creator Bush, Michele L.
Zhang, Wei
Ben-Jebria, Abdellaziz
Ultman, James S.
description In the single-path model of the respiratory system, gas transport occurs within a conduit of progressively increasing cross-sectional and surface areas by a combination of flow, longitudinal dispersion, and lateral absorption. The purpose of this study was to use bolus inhalation data previously obtained for chlorine (Cl2) and for ozone (O3) to test the predictive capability of the single-path model and to adjust input parameters for applying the model to other exposure conditions. The data, consisting of uptake fraction as a function of bolus penetration volume, were recorded on 10 healthy nonsmokers breathing orally as well as nasally at alternative air flows of 150, 250, and 1000 ml/s. By employing published data for airway anatomy, gas-phase dispersion coefficients, and gas-phase mass transfer coefficients while neglecting diffusion limitations in the mucus phase, the single-path model was capable of predicting the uptake distribution for O3 but not the steeper distribution that was observed for Cl2. To simultaneously explain the data for these two gases, it was necessary to increase gas-phase mass transfer coefficients and to include a finite diffusion resistance of O3 within the mucous layer. The O3 reaction rate constants that accounted for this diffusion resistance, 2 × 106 s−1 in the mouth and 8 × 106 s−1 in the nose and lower airways, were much greater than previously reported reactivities of individual substrates found in mucus.
doi_str_mv 10.1006/taap.2001.9182
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17903948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0041008X01991823</els_id><sourcerecordid>17903948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-169775fda5f70a1ffeedc1b3259f24348cf23603af13eb70cb9f3d5bd7666ae33</originalsourceid><addsrcrecordid>eNp1kU2PFCEQhonRuOPq1aPhYLz1WDT96U3HjzUZHeOuiTdCQ7GD6YYRaM36V_yz0s4YvXiCIk89Reol5CGDNQNoniYpD-sSgK171pW3yIpB3xTAOb9NVgAVKwC6z2fkXoxfAKCvKnaXnDFW8bbh9Yr83Hp3bdOsrZMjfWljCnaYk_WOekN3P7xDKp2mm_3og82FdTTtkV7Mk3T0I8aDDTL5cEOvglTpGb200zzKP4L3MmbtItiFfHkRUKa9ddf0u03736LLXI1YfMjvebwxc1xa33mN431yx8gx4oPTeU4-vX51tbkotrs3bzfPt4WqAFLBmr5ta6NlbVqQzBhErdjAy7o3ZcWrTpmSN8ClYRyHFtTQG67rQbdN00jk_Jw8OXoPwX-dMSYx2ahwHKVDP0fB2h54X3UZXB9BFXyMAY04BDvJcCMYiCUOscQhljjEEkdueHQyz8OE-i9-2n8GHp8AGZUcTZBO2fiPtulyaBnrjhjmNXyzGERUFp1CbQOqJLS3__vCLwwYqKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17903948</pqid></control><display><type>article</type><title>Longitudinal Distribution of Ozone and Chlorine in the Human Respiratory Tract: Simulation of Nasal and Oral Breathing with the Single-Path Diffusion Model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bush, Michele L. ; Zhang, Wei ; Ben-Jebria, Abdellaziz ; Ultman, James S.</creator><creatorcontrib>Bush, Michele L. ; Zhang, Wei ; Ben-Jebria, Abdellaziz ; Ultman, James S.</creatorcontrib><description>In the single-path model of the respiratory system, gas transport occurs within a conduit of progressively increasing cross-sectional and surface areas by a combination of flow, longitudinal dispersion, and lateral absorption. The purpose of this study was to use bolus inhalation data previously obtained for chlorine (Cl2) and for ozone (O3) to test the predictive capability of the single-path model and to adjust input parameters for applying the model to other exposure conditions. The data, consisting of uptake fraction as a function of bolus penetration volume, were recorded on 10 healthy nonsmokers breathing orally as well as nasally at alternative air flows of 150, 250, and 1000 ml/s. By employing published data for airway anatomy, gas-phase dispersion coefficients, and gas-phase mass transfer coefficients while neglecting diffusion limitations in the mucus phase, the single-path model was capable of predicting the uptake distribution for O3 but not the steeper distribution that was observed for Cl2. To simultaneously explain the data for these two gases, it was necessary to increase gas-phase mass transfer coefficients and to include a finite diffusion resistance of O3 within the mucous layer. The O3 reaction rate constants that accounted for this diffusion resistance, 2 × 106 s−1 in the mouth and 8 × 106 s−1 in the nose and lower airways, were much greater than previously reported reactivities of individual substrates found in mucus.</description><identifier>ISSN: 0041-008X</identifier><identifier>EISSN: 1096-0333</identifier><identifier>DOI: 10.1006/taap.2001.9182</identifier><identifier>PMID: 11437635</identifier><identifier>CODEN: TXAPA9</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Administration, Inhalation ; air pollutant dosimetry ; Biological and medical sciences ; bolus inhalation ; Chemical and industrial products toxicology. Toxic occupational diseases ; Chlorine - administration &amp; dosage ; Chlorine - pharmacokinetics ; Diffusion ; diffusion–reaction ; Female ; Gas, fumes ; Humans ; inhalation toxicology ; Male ; mathematical modeling ; Mathematics ; Medical sciences ; Models, Biological ; Mouth ; Nose ; Ozone - administration &amp; dosage ; Ozone - pharmacokinetics ; reactive gas uptake ; Respiration ; Respiratory System - metabolism ; single-path diffusion model ; Tissue Distribution ; Toxicology</subject><ispartof>Toxicology and applied pharmacology, 2001-06, Vol.173 (3), p.137-145</ispartof><rights>2001 Academic Press</rights><rights>2001 INIST-CNRS</rights><rights>Copyright 2001 Academic Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-169775fda5f70a1ffeedc1b3259f24348cf23603af13eb70cb9f3d5bd7666ae33</citedby><cites>FETCH-LOGICAL-c400t-169775fda5f70a1ffeedc1b3259f24348cf23603af13eb70cb9f3d5bd7666ae33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/taap.2001.9182$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1068009$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11437635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bush, Michele L.</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Ben-Jebria, Abdellaziz</creatorcontrib><creatorcontrib>Ultman, James S.</creatorcontrib><title>Longitudinal Distribution of Ozone and Chlorine in the Human Respiratory Tract: Simulation of Nasal and Oral Breathing with the Single-Path Diffusion Model</title><title>Toxicology and applied pharmacology</title><addtitle>Toxicol Appl Pharmacol</addtitle><description>In the single-path model of the respiratory system, gas transport occurs within a conduit of progressively increasing cross-sectional and surface areas by a combination of flow, longitudinal dispersion, and lateral absorption. The purpose of this study was to use bolus inhalation data previously obtained for chlorine (Cl2) and for ozone (O3) to test the predictive capability of the single-path model and to adjust input parameters for applying the model to other exposure conditions. The data, consisting of uptake fraction as a function of bolus penetration volume, were recorded on 10 healthy nonsmokers breathing orally as well as nasally at alternative air flows of 150, 250, and 1000 ml/s. By employing published data for airway anatomy, gas-phase dispersion coefficients, and gas-phase mass transfer coefficients while neglecting diffusion limitations in the mucus phase, the single-path model was capable of predicting the uptake distribution for O3 but not the steeper distribution that was observed for Cl2. To simultaneously explain the data for these two gases, it was necessary to increase gas-phase mass transfer coefficients and to include a finite diffusion resistance of O3 within the mucous layer. The O3 reaction rate constants that accounted for this diffusion resistance, 2 × 106 s−1 in the mouth and 8 × 106 s−1 in the nose and lower airways, were much greater than previously reported reactivities of individual substrates found in mucus.</description><subject>Administration, Inhalation</subject><subject>air pollutant dosimetry</subject><subject>Biological and medical sciences</subject><subject>bolus inhalation</subject><subject>Chemical and industrial products toxicology. Toxic occupational diseases</subject><subject>Chlorine - administration &amp; dosage</subject><subject>Chlorine - pharmacokinetics</subject><subject>Diffusion</subject><subject>diffusion–reaction</subject><subject>Female</subject><subject>Gas, fumes</subject><subject>Humans</subject><subject>inhalation toxicology</subject><subject>Male</subject><subject>mathematical modeling</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Models, Biological</subject><subject>Mouth</subject><subject>Nose</subject><subject>Ozone - administration &amp; dosage</subject><subject>Ozone - pharmacokinetics</subject><subject>reactive gas uptake</subject><subject>Respiration</subject><subject>Respiratory System - metabolism</subject><subject>single-path diffusion model</subject><subject>Tissue Distribution</subject><subject>Toxicology</subject><issn>0041-008X</issn><issn>1096-0333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU2PFCEQhonRuOPq1aPhYLz1WDT96U3HjzUZHeOuiTdCQ7GD6YYRaM36V_yz0s4YvXiCIk89Reol5CGDNQNoniYpD-sSgK171pW3yIpB3xTAOb9NVgAVKwC6z2fkXoxfAKCvKnaXnDFW8bbh9Yr83Hp3bdOsrZMjfWljCnaYk_WOekN3P7xDKp2mm_3og82FdTTtkV7Mk3T0I8aDDTL5cEOvglTpGb200zzKP4L3MmbtItiFfHkRUKa9ddf0u03736LLXI1YfMjvebwxc1xa33mN431yx8gx4oPTeU4-vX51tbkotrs3bzfPt4WqAFLBmr5ta6NlbVqQzBhErdjAy7o3ZcWrTpmSN8ClYRyHFtTQG67rQbdN00jk_Jw8OXoPwX-dMSYx2ahwHKVDP0fB2h54X3UZXB9BFXyMAY04BDvJcCMYiCUOscQhljjEEkdueHQyz8OE-i9-2n8GHp8AGZUcTZBO2fiPtulyaBnrjhjmNXyzGERUFp1CbQOqJLS3__vCLwwYqKA</recordid><startdate>20010615</startdate><enddate>20010615</enddate><creator>Bush, Michele L.</creator><creator>Zhang, Wei</creator><creator>Ben-Jebria, Abdellaziz</creator><creator>Ultman, James S.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>20010615</creationdate><title>Longitudinal Distribution of Ozone and Chlorine in the Human Respiratory Tract: Simulation of Nasal and Oral Breathing with the Single-Path Diffusion Model</title><author>Bush, Michele L. ; Zhang, Wei ; Ben-Jebria, Abdellaziz ; Ultman, James S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-169775fda5f70a1ffeedc1b3259f24348cf23603af13eb70cb9f3d5bd7666ae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Administration, Inhalation</topic><topic>air pollutant dosimetry</topic><topic>Biological and medical sciences</topic><topic>bolus inhalation</topic><topic>Chemical and industrial products toxicology. Toxic occupational diseases</topic><topic>Chlorine - administration &amp; dosage</topic><topic>Chlorine - pharmacokinetics</topic><topic>Diffusion</topic><topic>diffusion–reaction</topic><topic>Female</topic><topic>Gas, fumes</topic><topic>Humans</topic><topic>inhalation toxicology</topic><topic>Male</topic><topic>mathematical modeling</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Models, Biological</topic><topic>Mouth</topic><topic>Nose</topic><topic>Ozone - administration &amp; dosage</topic><topic>Ozone - pharmacokinetics</topic><topic>reactive gas uptake</topic><topic>Respiration</topic><topic>Respiratory System - metabolism</topic><topic>single-path diffusion model</topic><topic>Tissue Distribution</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bush, Michele L.</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Ben-Jebria, Abdellaziz</creatorcontrib><creatorcontrib>Ultman, James S.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Toxicology and applied pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bush, Michele L.</au><au>Zhang, Wei</au><au>Ben-Jebria, Abdellaziz</au><au>Ultman, James S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longitudinal Distribution of Ozone and Chlorine in the Human Respiratory Tract: Simulation of Nasal and Oral Breathing with the Single-Path Diffusion Model</atitle><jtitle>Toxicology and applied pharmacology</jtitle><addtitle>Toxicol Appl Pharmacol</addtitle><date>2001-06-15</date><risdate>2001</risdate><volume>173</volume><issue>3</issue><spage>137</spage><epage>145</epage><pages>137-145</pages><issn>0041-008X</issn><eissn>1096-0333</eissn><coden>TXAPA9</coden><abstract>In the single-path model of the respiratory system, gas transport occurs within a conduit of progressively increasing cross-sectional and surface areas by a combination of flow, longitudinal dispersion, and lateral absorption. The purpose of this study was to use bolus inhalation data previously obtained for chlorine (Cl2) and for ozone (O3) to test the predictive capability of the single-path model and to adjust input parameters for applying the model to other exposure conditions. The data, consisting of uptake fraction as a function of bolus penetration volume, were recorded on 10 healthy nonsmokers breathing orally as well as nasally at alternative air flows of 150, 250, and 1000 ml/s. By employing published data for airway anatomy, gas-phase dispersion coefficients, and gas-phase mass transfer coefficients while neglecting diffusion limitations in the mucus phase, the single-path model was capable of predicting the uptake distribution for O3 but not the steeper distribution that was observed for Cl2. To simultaneously explain the data for these two gases, it was necessary to increase gas-phase mass transfer coefficients and to include a finite diffusion resistance of O3 within the mucous layer. The O3 reaction rate constants that accounted for this diffusion resistance, 2 × 106 s−1 in the mouth and 8 × 106 s−1 in the nose and lower airways, were much greater than previously reported reactivities of individual substrates found in mucus.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><pmid>11437635</pmid><doi>10.1006/taap.2001.9182</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-008X
ispartof Toxicology and applied pharmacology, 2001-06, Vol.173 (3), p.137-145
issn 0041-008X
1096-0333
language eng
recordid cdi_proquest_miscellaneous_17903948
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Administration, Inhalation
air pollutant dosimetry
Biological and medical sciences
bolus inhalation
Chemical and industrial products toxicology. Toxic occupational diseases
Chlorine - administration & dosage
Chlorine - pharmacokinetics
Diffusion
diffusion–reaction
Female
Gas, fumes
Humans
inhalation toxicology
Male
mathematical modeling
Mathematics
Medical sciences
Models, Biological
Mouth
Nose
Ozone - administration & dosage
Ozone - pharmacokinetics
reactive gas uptake
Respiration
Respiratory System - metabolism
single-path diffusion model
Tissue Distribution
Toxicology
title Longitudinal Distribution of Ozone and Chlorine in the Human Respiratory Tract: Simulation of Nasal and Oral Breathing with the Single-Path Diffusion Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T21%3A15%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longitudinal%20Distribution%20of%20Ozone%20and%20Chlorine%20in%20the%20Human%20Respiratory%20Tract:%20Simulation%20of%20Nasal%20and%20Oral%20Breathing%20with%20the%20Single-Path%20Diffusion%20Model&rft.jtitle=Toxicology%20and%20applied%20pharmacology&rft.au=Bush,%20Michele%20L.&rft.date=2001-06-15&rft.volume=173&rft.issue=3&rft.spage=137&rft.epage=145&rft.pages=137-145&rft.issn=0041-008X&rft.eissn=1096-0333&rft.coden=TXAPA9&rft_id=info:doi/10.1006/taap.2001.9182&rft_dat=%3Cproquest_cross%3E17903948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17903948&rft_id=info:pmid/11437635&rft_els_id=S0041008X01991823&rfr_iscdi=true