Microarray-integrated optoelectrofluidic immunoassay system
A microarray-based analytical platform has been utilized as a powerful tool in biological assay fields. However, an analyte depletion problem due to the slow mass transport based on molecular diffusion causes low reaction efficiency, resulting in a limitation for practical applications. This paper p...
Gespeichert in:
Veröffentlicht in: | Biomicrofluidics 2016-05, Vol.10 (3), p.034106-034106 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 034106 |
---|---|
container_issue | 3 |
container_start_page | 034106 |
container_title | Biomicrofluidics |
container_volume | 10 |
creator | Han, Dongsik Park, Je-Kyun |
description | A microarray-based analytical platform has been utilized as a powerful tool in biological assay fields. However, an analyte depletion problem due to the slow mass transport based on molecular diffusion causes low reaction efficiency, resulting in a limitation for practical applications. This paper presents a novel method to improve the efficiency of microarray-based immunoassay via an optically induced electrokinetic phenomenon by integrating an optoelectrofluidic device with a conventional glass slide-based microarray format. A sample droplet was loaded between the microarray slide and the optoelectrofluidic device on which a photoconductive layer was deposited. Under the application of an AC voltage, optically induced AC electroosmotic flows caused by a microarray-patterned light actively enhanced the mass transport of target molecules at the multiple assay spots of the microarray simultaneously, which reduced tedious reaction time from more than 30 min to 10 min. Based on this enhancing effect, a heterogeneous immunoassay with a tiny volume of sample (5 μl) was successfully performed in the microarray-integrated optoelectrofluidic system using immunoglobulin G (IgG) and anti-IgG, resulting in improved efficiency compared to the static environment. Furthermore, the application of multiplex assays was also demonstrated by multiple protein detection. |
doi_str_mv | 10.1063/1.4950787 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1790016877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2121814302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-50c52db2c4864dd98159d56dcde58787b78b676d8c2fb93dbfde8d4d91c3c07c3</originalsourceid><addsrcrecordid>eNp90U9LHDEYBvAgin-2HvwCZcFLWxibN5lMEgShiFVB8dKeQybJ2MjMZE0ywn57U3a7VUFPCeTHkzd5EDoCfAK4od_hpJYMc8G30D5ISirATGy_2O-hg5QeMGbACdlFe4SDxIzDPjq99SYGHaNeVn7M7j7q7Ow8LHJwvTM5hq6fvPVm7odhGoNOSS_naZmyGz6hnU73yR2u1xn6_fPi1_lVdXN3eX3-46YyNae5YtgwYltiatHU1koBTFrWWGMdE2Xolou24Y0VhnStpLbtrBO2thIMNZgbOkNnq9zF1A7OGjfmqHu1iH7QcamC9ur1yej_qPvwpMqFjaxpCfiyDojhcXIpq8En4_pejy5MSQGXGEMjOC_0-A19CFMcy_MUAQICaopJUV9XqvxdStF1m2EAq7-VKFDrSor9_HL6jfzXQQHfViAZn3X2Yfww7V38FOJ_qBa2o88vs6P7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121814302</pqid></control><display><type>article</type><title>Microarray-integrated optoelectrofluidic immunoassay system</title><source>AIP Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Han, Dongsik ; Park, Je-Kyun</creator><creatorcontrib>Han, Dongsik ; Park, Je-Kyun</creatorcontrib><description>A microarray-based analytical platform has been utilized as a powerful tool in biological assay fields. However, an analyte depletion problem due to the slow mass transport based on molecular diffusion causes low reaction efficiency, resulting in a limitation for practical applications. This paper presents a novel method to improve the efficiency of microarray-based immunoassay via an optically induced electrokinetic phenomenon by integrating an optoelectrofluidic device with a conventional glass slide-based microarray format. A sample droplet was loaded between the microarray slide and the optoelectrofluidic device on which a photoconductive layer was deposited. Under the application of an AC voltage, optically induced AC electroosmotic flows caused by a microarray-patterned light actively enhanced the mass transport of target molecules at the multiple assay spots of the microarray simultaneously, which reduced tedious reaction time from more than 30 min to 10 min. Based on this enhancing effect, a heterogeneous immunoassay with a tiny volume of sample (5 μl) was successfully performed in the microarray-integrated optoelectrofluidic system using immunoglobulin G (IgG) and anti-IgG, resulting in improved efficiency compared to the static environment. Furthermore, the application of multiplex assays was also demonstrated by multiple protein detection.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/1.4950787</identifier><identifier>PMID: 27190571</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Diffusion rate ; Efficiency ; Electrokinetics ; Immunoassay ; Mass transport ; Molecular diffusion ; Proteins ; Reaction time ; Regular</subject><ispartof>Biomicrofluidics, 2016-05, Vol.10 (3), p.034106-034106</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><rights>Copyright © 2016 Author(s) 2016 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-50c52db2c4864dd98159d56dcde58787b78b676d8c2fb93dbfde8d4d91c3c07c3</citedby><cites>FETCH-LOGICAL-c473t-50c52db2c4864dd98159d56dcde58787b78b676d8c2fb93dbfde8d4d91c3c07c3</cites><orcidid>0000-0003-4522-2574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4866943/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://pubs.aip.org/bmf/article-lookup/doi/10.1063/1.4950787$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,727,780,784,794,885,4512,27924,27925,53791,53793,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27190571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Dongsik</creatorcontrib><creatorcontrib>Park, Je-Kyun</creatorcontrib><title>Microarray-integrated optoelectrofluidic immunoassay system</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>A microarray-based analytical platform has been utilized as a powerful tool in biological assay fields. However, an analyte depletion problem due to the slow mass transport based on molecular diffusion causes low reaction efficiency, resulting in a limitation for practical applications. This paper presents a novel method to improve the efficiency of microarray-based immunoassay via an optically induced electrokinetic phenomenon by integrating an optoelectrofluidic device with a conventional glass slide-based microarray format. A sample droplet was loaded between the microarray slide and the optoelectrofluidic device on which a photoconductive layer was deposited. Under the application of an AC voltage, optically induced AC electroosmotic flows caused by a microarray-patterned light actively enhanced the mass transport of target molecules at the multiple assay spots of the microarray simultaneously, which reduced tedious reaction time from more than 30 min to 10 min. Based on this enhancing effect, a heterogeneous immunoassay with a tiny volume of sample (5 μl) was successfully performed in the microarray-integrated optoelectrofluidic system using immunoglobulin G (IgG) and anti-IgG, resulting in improved efficiency compared to the static environment. Furthermore, the application of multiplex assays was also demonstrated by multiple protein detection.</description><subject>Diffusion rate</subject><subject>Efficiency</subject><subject>Electrokinetics</subject><subject>Immunoassay</subject><subject>Mass transport</subject><subject>Molecular diffusion</subject><subject>Proteins</subject><subject>Reaction time</subject><subject>Regular</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90U9LHDEYBvAgin-2HvwCZcFLWxibN5lMEgShiFVB8dKeQybJ2MjMZE0ywn57U3a7VUFPCeTHkzd5EDoCfAK4od_hpJYMc8G30D5ISirATGy_2O-hg5QeMGbACdlFe4SDxIzDPjq99SYGHaNeVn7M7j7q7Ow8LHJwvTM5hq6fvPVm7odhGoNOSS_naZmyGz6hnU73yR2u1xn6_fPi1_lVdXN3eX3-46YyNae5YtgwYltiatHU1koBTFrWWGMdE2Xolou24Y0VhnStpLbtrBO2thIMNZgbOkNnq9zF1A7OGjfmqHu1iH7QcamC9ur1yej_qPvwpMqFjaxpCfiyDojhcXIpq8En4_pejy5MSQGXGEMjOC_0-A19CFMcy_MUAQICaopJUV9XqvxdStF1m2EAq7-VKFDrSor9_HL6jfzXQQHfViAZn3X2Yfww7V38FOJ_qBa2o88vs6P7</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Han, Dongsik</creator><creator>Park, Je-Kyun</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4522-2574</orcidid></search><sort><creationdate>20160501</creationdate><title>Microarray-integrated optoelectrofluidic immunoassay system</title><author>Han, Dongsik ; Park, Je-Kyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-50c52db2c4864dd98159d56dcde58787b78b676d8c2fb93dbfde8d4d91c3c07c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Diffusion rate</topic><topic>Efficiency</topic><topic>Electrokinetics</topic><topic>Immunoassay</topic><topic>Mass transport</topic><topic>Molecular diffusion</topic><topic>Proteins</topic><topic>Reaction time</topic><topic>Regular</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Dongsik</creatorcontrib><creatorcontrib>Park, Je-Kyun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Dongsik</au><au>Park, Je-Kyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microarray-integrated optoelectrofluidic immunoassay system</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>10</volume><issue>3</issue><spage>034106</spage><epage>034106</epage><pages>034106-034106</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>A microarray-based analytical platform has been utilized as a powerful tool in biological assay fields. However, an analyte depletion problem due to the slow mass transport based on molecular diffusion causes low reaction efficiency, resulting in a limitation for practical applications. This paper presents a novel method to improve the efficiency of microarray-based immunoassay via an optically induced electrokinetic phenomenon by integrating an optoelectrofluidic device with a conventional glass slide-based microarray format. A sample droplet was loaded between the microarray slide and the optoelectrofluidic device on which a photoconductive layer was deposited. Under the application of an AC voltage, optically induced AC electroosmotic flows caused by a microarray-patterned light actively enhanced the mass transport of target molecules at the multiple assay spots of the microarray simultaneously, which reduced tedious reaction time from more than 30 min to 10 min. Based on this enhancing effect, a heterogeneous immunoassay with a tiny volume of sample (5 μl) was successfully performed in the microarray-integrated optoelectrofluidic system using immunoglobulin G (IgG) and anti-IgG, resulting in improved efficiency compared to the static environment. Furthermore, the application of multiplex assays was also demonstrated by multiple protein detection.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27190571</pmid><doi>10.1063/1.4950787</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4522-2574</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-1058 |
ispartof | Biomicrofluidics, 2016-05, Vol.10 (3), p.034106-034106 |
issn | 1932-1058 1932-1058 |
language | eng |
recordid | cdi_proquest_miscellaneous_1790016877 |
source | AIP Journals Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Diffusion rate Efficiency Electrokinetics Immunoassay Mass transport Molecular diffusion Proteins Reaction time Regular |
title | Microarray-integrated optoelectrofluidic immunoassay system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microarray-integrated%20optoelectrofluidic%20immunoassay%20system&rft.jtitle=Biomicrofluidics&rft.au=Han,%20Dongsik&rft.date=2016-05-01&rft.volume=10&rft.issue=3&rft.spage=034106&rft.epage=034106&rft.pages=034106-034106&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/1.4950787&rft_dat=%3Cproquest_pubme%3E2121814302%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121814302&rft_id=info:pmid/27190571&rfr_iscdi=true |