Activation of AMPK inhibits PDGF-induced pulmonary arterial smooth muscle cells proliferation and its potential mechanisms
[Display omitted] The aims of the present study were to examine signaling mechanisms for PDGF-induced pulmonary arterial smooth muscle cells (PASMC) proliferation and to determine the effect of AMPK activation on PDGF-induced PASMC proliferation and its underlying mechanisms. PDGF activated PI3K/Akt...
Gespeichert in:
Veröffentlicht in: | Pharmacological research 2016-05, Vol.107, p.117-124 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
The aims of the present study were to examine signaling mechanisms for PDGF-induced pulmonary arterial smooth muscle cells (PASMC) proliferation and to determine the effect of AMPK activation on PDGF-induced PASMC proliferation and its underlying mechanisms. PDGF activated PI3K/Akt/mTOR signaling pathway, and this in turn up-regulated Skp2 and consequently reduced p27 leading to PASMC proliferation. Prior incubation of PASMC with metformin induced a dramatic AMPK activation and significantly blocked PDGF-induced cell proliferation. PASMC lacking AMPKα2 were resistant to the inhibitory effect of metformin on PDGF-induced cell proliferation. Metformin did not affect Akt activation but blocked mTOR phosphorylation in response to PDGF; these were accompanied by the reversion of Skp2 up-regulation and p27 reduction. Our study suggests that the activation of AMPK negatively regulates mTOR activity to suppress PASMC proliferation and therefore has a potential value in the prevention and treatment of pulmonary hypertension by negatively modulating pulmonary vascular remodeling. |
---|---|
ISSN: | 1043-6618 1096-1186 |
DOI: | 10.1016/j.phrs.2016.03.010 |