Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques
This protocol from Bonora et al . describes three imaging techniques for examining mitochondrial permeability transition (mPT) in living cells. Mitochondrial permeability transition (mPT) refers to a sudden increase in the permeability of the inner mitochondrial membrane. Long-term studies of mPT re...
Gespeichert in:
Veröffentlicht in: | Nature protocols 2016-06, Vol.11 (6), p.1067-1080 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1080 |
---|---|
container_issue | 6 |
container_start_page | 1067 |
container_title | Nature protocols |
container_volume | 11 |
creator | Bonora, Massimo Morganti, Claudia Morciano, Giampaolo Giorgi, Carlotta Wieckowski, Mariusz R Pinton, Paolo |
description | This protocol from Bonora
et al
. describes three imaging techniques for examining mitochondrial permeability transition (mPT) in living cells.
Mitochondrial permeability transition (mPT) refers to a sudden increase in the permeability of the inner mitochondrial membrane. Long-term studies of mPT revealed that this phenomenon has a critical role in multiple pathophysiological processes. mPT is mediated by the opening of a complex termed the mPT pore (mPTP), which is responsible for the osmotic influx of water into the mitochondrial matrix, resulting in swelling of mitochondria and dissipation of the mitochondrial membrane potential. Here we provide three independent optimized protocols for monitoring mPT in living cells: (i) measurement using a calcein–cobalt technique, (ii) measurement of the mPTP-dependent alteration of the mitochondrial membrane potential, and (iii) measurement of mitochondrial swelling. These procedures can easily be modified and adapted to different cell types. Cell culture and preparation of the samples are estimated to take ∼1 d for methods (i) and (ii), and ∼3 d for method (iii). The entire experiment, including analyses, takes ∼2 h. |
doi_str_mv | 10.1038/nprot.2016.064 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1789494507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A454488402</galeid><sourcerecordid>A454488402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-6f4145c48d880a5d5eebee59c4853d9de1d78ecc3e38affc6ccb450434424d8a3</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxSMEoqVw5YgicaFC2dqJE9vH1YpCpQokKOJoOc5k11ViL7ZTsR-Bb82kLX8WLcgHj8a_N7aeX5Y9p2RBSSXO3Db4tCgJbRakYQ-yY8prUpRcyoe3NStKKuRR9iTGa0IYrxr-ODsqOeUlbfhx9n3lx22ADbhobyDXTg-7aGPu-3y0yZuNd12wesi3EEbQrR1s2uUpaOST9S7f-oAyk-zNfGBdPmDl1rmBYYj5FOe6HyakogFnoLCjXmOzaHWELk9gNs5-nSA-zR71eojw7H4_yT6fv7lavSsuP7y9WC0vC1NLloqmZ5TVholOCKLrrgZoAWqJnbrqZAe04wKMqaASuu9NY0zLasIqxkrWCV2dZK_u5qJz871JjTbOr9UO_BQV5UIyiRKO6Mu_0Gs_BbQoqrJuJKWlkOX_KMpliX_AJPlNrfUAyrreo4lmvlotGSJCMDLPWhygcHUwWuMd9Bb7e4LTPQEyCb6ltZ5iVBefPu6zr__NLq--rN4ffIoJPsYAvdoG_LuwU5SoOXvqNntqzp7C7KHgxb0PUztC9wv_GTYEzu6AiEduDeEPow6P_AEHF-WJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1792754490</pqid></control><display><type>article</type><title>Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Bonora, Massimo ; Morganti, Claudia ; Morciano, Giampaolo ; Giorgi, Carlotta ; Wieckowski, Mariusz R ; Pinton, Paolo</creator><creatorcontrib>Bonora, Massimo ; Morganti, Claudia ; Morciano, Giampaolo ; Giorgi, Carlotta ; Wieckowski, Mariusz R ; Pinton, Paolo</creatorcontrib><description>This protocol from Bonora
et al
. describes three imaging techniques for examining mitochondrial permeability transition (mPT) in living cells.
Mitochondrial permeability transition (mPT) refers to a sudden increase in the permeability of the inner mitochondrial membrane. Long-term studies of mPT revealed that this phenomenon has a critical role in multiple pathophysiological processes. mPT is mediated by the opening of a complex termed the mPT pore (mPTP), which is responsible for the osmotic influx of water into the mitochondrial matrix, resulting in swelling of mitochondria and dissipation of the mitochondrial membrane potential. Here we provide three independent optimized protocols for monitoring mPT in living cells: (i) measurement using a calcein–cobalt technique, (ii) measurement of the mPTP-dependent alteration of the mitochondrial membrane potential, and (iii) measurement of mitochondrial swelling. These procedures can easily be modified and adapted to different cell types. Cell culture and preparation of the samples are estimated to take ∼1 d for methods (i) and (ii), and ∼3 d for method (iii). The entire experiment, including analyses, takes ∼2 h.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/nprot.2016.064</identifier><identifier>PMID: 27172167</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/2 ; 13/95 ; 631/1647/1888/1493 ; 631/1647/245/2225 ; 631/80/642/333 ; 631/80/86/2366 ; Analysis ; Analytical Chemistry ; Biological Techniques ; Calcein ; Cell culture ; Cell Survival ; Cells (biology) ; Cobalt ; Computational Biology/Bioinformatics ; Fluorescence ; HeLa Cells ; Humans ; Imaging techniques ; Kinetics ; Life Sciences ; Membrane permeability ; Membrane potential ; Membranes ; Microarrays ; Mitochondria ; Mitochondrial DNA ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial permeability transition pore ; Optical Imaging - methods ; Organic Chemistry ; Permeability ; Physiological aspects ; Protocol ; Swelling</subject><ispartof>Nature protocols, 2016-06, Vol.11 (6), p.1067-1080</ispartof><rights>Springer Nature Limited 2016</rights><rights>COPYRIGHT 2016 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2016</rights><rights>Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-6f4145c48d880a5d5eebee59c4853d9de1d78ecc3e38affc6ccb450434424d8a3</citedby><cites>FETCH-LOGICAL-c594t-6f4145c48d880a5d5eebee59c4853d9de1d78ecc3e38affc6ccb450434424d8a3</cites><orcidid>0000-0001-7108-6508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27172167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonora, Massimo</creatorcontrib><creatorcontrib>Morganti, Claudia</creatorcontrib><creatorcontrib>Morciano, Giampaolo</creatorcontrib><creatorcontrib>Giorgi, Carlotta</creatorcontrib><creatorcontrib>Wieckowski, Mariusz R</creatorcontrib><creatorcontrib>Pinton, Paolo</creatorcontrib><title>Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>This protocol from Bonora
et al
. describes three imaging techniques for examining mitochondrial permeability transition (mPT) in living cells.
Mitochondrial permeability transition (mPT) refers to a sudden increase in the permeability of the inner mitochondrial membrane. Long-term studies of mPT revealed that this phenomenon has a critical role in multiple pathophysiological processes. mPT is mediated by the opening of a complex termed the mPT pore (mPTP), which is responsible for the osmotic influx of water into the mitochondrial matrix, resulting in swelling of mitochondria and dissipation of the mitochondrial membrane potential. Here we provide three independent optimized protocols for monitoring mPT in living cells: (i) measurement using a calcein–cobalt technique, (ii) measurement of the mPTP-dependent alteration of the mitochondrial membrane potential, and (iii) measurement of mitochondrial swelling. These procedures can easily be modified and adapted to different cell types. Cell culture and preparation of the samples are estimated to take ∼1 d for methods (i) and (ii), and ∼3 d for method (iii). The entire experiment, including analyses, takes ∼2 h.</description><subject>13/2</subject><subject>13/95</subject><subject>631/1647/1888/1493</subject><subject>631/1647/245/2225</subject><subject>631/80/642/333</subject><subject>631/80/86/2366</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Biological Techniques</subject><subject>Calcein</subject><subject>Cell culture</subject><subject>Cell Survival</subject><subject>Cells (biology)</subject><subject>Cobalt</subject><subject>Computational Biology/Bioinformatics</subject><subject>Fluorescence</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Imaging techniques</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Membrane permeability</subject><subject>Membrane potential</subject><subject>Membranes</subject><subject>Microarrays</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial permeability transition pore</subject><subject>Optical Imaging - methods</subject><subject>Organic Chemistry</subject><subject>Permeability</subject><subject>Physiological aspects</subject><subject>Protocol</subject><subject>Swelling</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk9v1DAQxSMEoqVw5YgicaFC2dqJE9vH1YpCpQokKOJoOc5k11ViL7ZTsR-Bb82kLX8WLcgHj8a_N7aeX5Y9p2RBSSXO3Db4tCgJbRakYQ-yY8prUpRcyoe3NStKKuRR9iTGa0IYrxr-ODsqOeUlbfhx9n3lx22ADbhobyDXTg-7aGPu-3y0yZuNd12wesi3EEbQrR1s2uUpaOST9S7f-oAyk-zNfGBdPmDl1rmBYYj5FOe6HyakogFnoLCjXmOzaHWELk9gNs5-nSA-zR71eojw7H4_yT6fv7lavSsuP7y9WC0vC1NLloqmZ5TVholOCKLrrgZoAWqJnbrqZAe04wKMqaASuu9NY0zLasIqxkrWCV2dZK_u5qJz871JjTbOr9UO_BQV5UIyiRKO6Mu_0Gs_BbQoqrJuJKWlkOX_KMpliX_AJPlNrfUAyrreo4lmvlotGSJCMDLPWhygcHUwWuMd9Bb7e4LTPQEyCb6ltZ5iVBefPu6zr__NLq--rN4ffIoJPsYAvdoG_LuwU5SoOXvqNntqzp7C7KHgxb0PUztC9wv_GTYEzu6AiEduDeEPow6P_AEHF-WJ</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Bonora, Massimo</creator><creator>Morganti, Claudia</creator><creator>Morciano, Giampaolo</creator><creator>Giorgi, Carlotta</creator><creator>Wieckowski, Mariusz R</creator><creator>Pinton, Paolo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7108-6508</orcidid></search><sort><creationdate>20160601</creationdate><title>Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques</title><author>Bonora, Massimo ; Morganti, Claudia ; Morciano, Giampaolo ; Giorgi, Carlotta ; Wieckowski, Mariusz R ; Pinton, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-6f4145c48d880a5d5eebee59c4853d9de1d78ecc3e38affc6ccb450434424d8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13/2</topic><topic>13/95</topic><topic>631/1647/1888/1493</topic><topic>631/1647/245/2225</topic><topic>631/80/642/333</topic><topic>631/80/86/2366</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Biological Techniques</topic><topic>Calcein</topic><topic>Cell culture</topic><topic>Cell Survival</topic><topic>Cells (biology)</topic><topic>Cobalt</topic><topic>Computational Biology/Bioinformatics</topic><topic>Fluorescence</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Imaging techniques</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Membrane permeability</topic><topic>Membrane potential</topic><topic>Membranes</topic><topic>Microarrays</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial permeability transition pore</topic><topic>Optical Imaging - methods</topic><topic>Organic Chemistry</topic><topic>Permeability</topic><topic>Physiological aspects</topic><topic>Protocol</topic><topic>Swelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonora, Massimo</creatorcontrib><creatorcontrib>Morganti, Claudia</creatorcontrib><creatorcontrib>Morciano, Giampaolo</creatorcontrib><creatorcontrib>Giorgi, Carlotta</creatorcontrib><creatorcontrib>Wieckowski, Mariusz R</creatorcontrib><creatorcontrib>Pinton, Paolo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonora, Massimo</au><au>Morganti, Claudia</au><au>Morciano, Giampaolo</au><au>Giorgi, Carlotta</au><au>Wieckowski, Mariusz R</au><au>Pinton, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2016-06-01</date><risdate>2016</risdate><volume>11</volume><issue>6</issue><spage>1067</spage><epage>1080</epage><pages>1067-1080</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>This protocol from Bonora
et al
. describes three imaging techniques for examining mitochondrial permeability transition (mPT) in living cells.
Mitochondrial permeability transition (mPT) refers to a sudden increase in the permeability of the inner mitochondrial membrane. Long-term studies of mPT revealed that this phenomenon has a critical role in multiple pathophysiological processes. mPT is mediated by the opening of a complex termed the mPT pore (mPTP), which is responsible for the osmotic influx of water into the mitochondrial matrix, resulting in swelling of mitochondria and dissipation of the mitochondrial membrane potential. Here we provide three independent optimized protocols for monitoring mPT in living cells: (i) measurement using a calcein–cobalt technique, (ii) measurement of the mPTP-dependent alteration of the mitochondrial membrane potential, and (iii) measurement of mitochondrial swelling. These procedures can easily be modified and adapted to different cell types. Cell culture and preparation of the samples are estimated to take ∼1 d for methods (i) and (ii), and ∼3 d for method (iii). The entire experiment, including analyses, takes ∼2 h.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>27172167</pmid><doi>10.1038/nprot.2016.064</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7108-6508</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-2189 |
ispartof | Nature protocols, 2016-06, Vol.11 (6), p.1067-1080 |
issn | 1754-2189 1750-2799 |
language | eng |
recordid | cdi_proquest_miscellaneous_1789494507 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | 13/2 13/95 631/1647/1888/1493 631/1647/245/2225 631/80/642/333 631/80/86/2366 Analysis Analytical Chemistry Biological Techniques Calcein Cell culture Cell Survival Cells (biology) Cobalt Computational Biology/Bioinformatics Fluorescence HeLa Cells Humans Imaging techniques Kinetics Life Sciences Membrane permeability Membrane potential Membranes Microarrays Mitochondria Mitochondrial DNA Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial permeability transition pore Optical Imaging - methods Organic Chemistry Permeability Physiological aspects Protocol Swelling |
title | Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20analysis%20of%20mitochondrial%20permeability%20transition%20pore%20activity%20in%20living%20cells%20using%20fluorescence-imaging-based%20techniques&rft.jtitle=Nature%20protocols&rft.au=Bonora,%20Massimo&rft.date=2016-06-01&rft.volume=11&rft.issue=6&rft.spage=1067&rft.epage=1080&rft.pages=1067-1080&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/nprot.2016.064&rft_dat=%3Cgale_proqu%3EA454488402%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1792754490&rft_id=info:pmid/27172167&rft_galeid=A454488402&rfr_iscdi=true |