A Temporally Controlled Inhibitory Drive Coordinates Twitch Movements during REM Sleep

During REM sleep, skeletal muscles are paralyzed in one moment but twitch and jerk in the next. REM sleep twitches are traditionally considered random motor events that result from momentary lapses in REM sleep paralysis [1–3]. However, recent evidence indicates that twitches are not byproducts of R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2016-05, Vol.26 (9), p.1177-1182
Hauptverfasser: Brooks, Patricia L., Peever, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During REM sleep, skeletal muscles are paralyzed in one moment but twitch and jerk in the next. REM sleep twitches are traditionally considered random motor events that result from momentary lapses in REM sleep paralysis [1–3]. However, recent evidence indicates that twitches are not byproducts of REM sleep, but are in fact self-generated events that could function to promote motor learning and development [4–6]. If REM twitches are indeed purposefully generated, then they should be controlled by a coordinated and definable mechanism. Here, we used behavioral, electrophysiological, pharmacological, and neuroanatomical methods to demonstrate that an inhibitory drive onto skeletal motoneurons produces a temporally coordinated pattern of muscle twitches during REM sleep. First, we show that muscle twitches in adult rats are not uniformly distributed during REM sleep, but instead follow a well-defined temporal trajectory. They are largely absent during REM initiation but increase steadily thereafter, peaking toward REM termination. Next, we identify the transmitter mechanism that controls the temporal nature of twitch activity. Specifically, we show that a GABA and glycine drive onto motoneurons prevents twitch activity during REM initiation, but progressive weakening of this drive functions to promote twitch activity during REM termination. These results demonstrate that REM twitches are not random byproducts of REM sleep, but are instead rather coherently generated events controlled by a temporally variable inhibitory drive. •Muscle twitches follow a well-defined temporal trajectory during REM sleep episodes•A variable inhibitory drive controls the temporal pattern of REM sleep twitches•Muscle twitches are not random byproducts of REM sleep Brooks and Peever demonstrate that an inhibitory drive onto skeletal motoneurons produces a temporally coordinated pattern of muscle twitches during REM sleep. Their results demonstrate that REM twitches are not random byproducts of REM sleep, but are coherently generated events controlled by a temporally variable inhibitory drive.
ISSN:0960-9822
1879-0445
DOI:10.1016/j.cub.2016.03.013