Scaling Down Habitat Selection by Large River Fishes to Understand Patterns Relevant to Individuals
Modification and homogenization of habitat in large‐river ecosystems have led to the reduction of >50% of native fish species. Rehabilitating these complex ecosystems to recover fish populations requires an understanding of habitat availability and selection at multiple scales. Habitat selection...
Gespeichert in:
Veröffentlicht in: | River research and applications 2016-05, Vol.32 (4), p.689-696 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Modification and homogenization of habitat in large‐river ecosystems have led to the reduction of >50% of native fish species. Rehabilitating these complex ecosystems to recover fish populations requires an understanding of habitat availability and selection at multiple scales. Habitat selection by river fishes is typically assessed at the functional unit scale (100–10 000 m2). For example, in large, sand‐dominated rivers of the Central USA, alluvial islands are critical functional units for endangered sturgeon. Functional units, however, can be subdivided into mesohabitats ( |
---|---|
ISSN: | 1535-1459 1535-1467 |
DOI: | 10.1002/rra.2883 |