Marked enhancement of sennoside bioactive compounds through precursor feeding in Cassia angustifolia Vahl and cloning of isochorismate synthase gene involved in its biosynthesis

Cassia angustifolia Vahl, a chief source of anthraquinone glycosides (sennosides), extensively employed as a laxative is also reported to possess significant anticancerous activity against various cancer cell lines. HPLC analysis of different in vivo plant parts viz., leaves, nodes, roots and seeds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant cell, tissue and organ culture tissue and organ culture, 2016-02, Vol.124 (2), p.431-446
Hauptverfasser: Chetri, Siva K, Kapoor, Himanshi, Agrawal, Veena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 446
container_issue 2
container_start_page 431
container_title Plant cell, tissue and organ culture
container_volume 124
creator Chetri, Siva K
Kapoor, Himanshi
Agrawal, Veena
description Cassia angustifolia Vahl, a chief source of anthraquinone glycosides (sennosides), extensively employed as a laxative is also reported to possess significant anticancerous activity against various cancer cell lines. HPLC analysis of different in vivo plant parts viz., leaves, nodes, roots and seeds revealed that the maximum content of both sennoside A (3816.10 µg/g fresh wt.) and sennoside B (646.74 µg/g fresh wt.) occur in leaf. Elicitation in sennoside content in leaf callus therefore, was achieved employing organic elicitors (glycine, myo-inositol, glutamine, proline, yeast extract, casein hydrolysate and sucrose) as well as precursors (α-keto glutaric acid and pyruvic acid) of anthraquinone pathway. Though there was enhancement at all levels of stress, the optimum elicitation in sennoside A and B was seen at 0.1 % pyruvic acid, their respective percentages being 16 and 32 %. Overall improvement in sennoside A and B content was seen in the order: pyruvic acid > α-keto-glutaric acid > sucrose > yeast extract > glycine > myo-inositol > proline > casein hydrolysate > glutamine. Most importantly, isochorismate synthase (ics), the key enzyme gene involved in the anthraquinone biosynthetic pathway has also been cloned from leaf and sequenced which comprised of 1377 bp. Neighbor joining tree generated through MEGA6 analysis of the nucleotide sequences revealed varied degree of homology with the ics gene sequences of Morus notabilis, Medicago truncatula, Solanum lycopersicum, Cicer arietinum, Glycine max, etc. This is the first report of elicitation of sennoside A and B from leaf callus cultures and cloning of ics gene in C. angustifolia.
doi_str_mv 10.1007/s11240-015-0905-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787986020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787986020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-2fc5e63f26bc1eb25f2538709fe75c921c2c150c148e0c5784af20307c0fcc973</originalsourceid><addsrcrecordid>eNp9kkGL1TAUhYso-Hz6A1wZcOOm403aNO1SHo4OjLjQcRvy0ps2Y1_yzG0fzM_yH5paQXDhKtxwzncPOSmKlxyuOIB6S5yLGkrgsoQOZMkfFTsuVVVKqOvHxQ54o8qmlepp8YzoHgCaqua74ucnk75jzzCMJlg8YZhZdIwwhEi-R3b00djZX5DZeDrHJfTE5jHFZRjZOaFdEsXEHGLvw8B8YAdD5A0zYVho9i5Oefhmxinf9MxOMay6vMJTtGNMnk5mRkYPYR4NIRswYMZc4nTJsTLPz7SG-C1A8vS8eOLMRPjiz7kv7q7ffz18LG8_f7g5vLstbV1XcymcldhUTjRHy_EopBOyahV0DpW0neBWWC7B8rpFsFK1tXECKlAWnLWdqvbFm417TvHHgjTrkyeL02QCxoU0V63q2gayaV-8_kd6H5cUcjothOyqrqrbFcg3lU2RKKHT5-RPJj1oDnotUW8l6lyiXkvUPHvE5qGsDQOmv-T_mV5tJmeiNkN-Yn33ReQfAMCBd1JUvwDUf6yH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259393487</pqid></control><display><type>article</type><title>Marked enhancement of sennoside bioactive compounds through precursor feeding in Cassia angustifolia Vahl and cloning of isochorismate synthase gene involved in its biosynthesis</title><source>SpringerNature Journals</source><creator>Chetri, Siva K ; Kapoor, Himanshi ; Agrawal, Veena</creator><creatorcontrib>Chetri, Siva K ; Kapoor, Himanshi ; Agrawal, Veena</creatorcontrib><description>Cassia angustifolia Vahl, a chief source of anthraquinone glycosides (sennosides), extensively employed as a laxative is also reported to possess significant anticancerous activity against various cancer cell lines. HPLC analysis of different in vivo plant parts viz., leaves, nodes, roots and seeds revealed that the maximum content of both sennoside A (3816.10 µg/g fresh wt.) and sennoside B (646.74 µg/g fresh wt.) occur in leaf. Elicitation in sennoside content in leaf callus therefore, was achieved employing organic elicitors (glycine, myo-inositol, glutamine, proline, yeast extract, casein hydrolysate and sucrose) as well as precursors (α-keto glutaric acid and pyruvic acid) of anthraquinone pathway. Though there was enhancement at all levels of stress, the optimum elicitation in sennoside A and B was seen at 0.1 % pyruvic acid, their respective percentages being 16 and 32 %. Overall improvement in sennoside A and B content was seen in the order: pyruvic acid &gt; α-keto-glutaric acid &gt; sucrose &gt; yeast extract &gt; glycine &gt; myo-inositol &gt; proline &gt; casein hydrolysate &gt; glutamine. Most importantly, isochorismate synthase (ics), the key enzyme gene involved in the anthraquinone biosynthetic pathway has also been cloned from leaf and sequenced which comprised of 1377 bp. Neighbor joining tree generated through MEGA6 analysis of the nucleotide sequences revealed varied degree of homology with the ics gene sequences of Morus notabilis, Medicago truncatula, Solanum lycopersicum, Cicer arietinum, Glycine max, etc. This is the first report of elicitation of sennoside A and B from leaf callus cultures and cloning of ics gene in C. angustifolia.</description><identifier>ISSN: 0167-6857</identifier><identifier>EISSN: 1573-5044</identifier><identifier>DOI: 10.1007/s11240-015-0905-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acids ; Alfalfa ; Anthraquinone ; Anthraquinones ; Bioactive compounds ; biochemical pathways ; Biomedical and Life Sciences ; Biosynthesis ; Callus ; callus culture ; Casein ; casein hydrolysates ; Cassia angustifolia ; Cicer arietinum ; Cloning ; elicitors ; Gene sequencing ; genes ; Glutamine ; glutaric acid ; Glycine max ; Glycosides ; High-performance liquid chromatography ; Homology ; Inositol ; Isochorismate synthase ; Leaves ; Life Sciences ; Liquid chromatography ; Medicago truncatula ; Morus ; myo-inositol ; neoplasms ; nucleotide sequences ; Nucleotides ; Original Article ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Precursors ; Proline ; Pyruvic acid ; roots ; Seeds ; Senna alexandrina ; Solanum ; Solanum lycopersicum ; Sucrose ; Sugar ; Tumor cell lines ; Yeast ; yeast extract ; Yeasts</subject><ispartof>Plant cell, tissue and organ culture, 2016-02, Vol.124 (2), p.431-446</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Plant Cell, Tissue and Organ Culture (PCTOC) is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-2fc5e63f26bc1eb25f2538709fe75c921c2c150c148e0c5784af20307c0fcc973</citedby><cites>FETCH-LOGICAL-c443t-2fc5e63f26bc1eb25f2538709fe75c921c2c150c148e0c5784af20307c0fcc973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11240-015-0905-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11240-015-0905-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chetri, Siva K</creatorcontrib><creatorcontrib>Kapoor, Himanshi</creatorcontrib><creatorcontrib>Agrawal, Veena</creatorcontrib><title>Marked enhancement of sennoside bioactive compounds through precursor feeding in Cassia angustifolia Vahl and cloning of isochorismate synthase gene involved in its biosynthesis</title><title>Plant cell, tissue and organ culture</title><addtitle>Plant Cell Tiss Organ Cult</addtitle><description>Cassia angustifolia Vahl, a chief source of anthraquinone glycosides (sennosides), extensively employed as a laxative is also reported to possess significant anticancerous activity against various cancer cell lines. HPLC analysis of different in vivo plant parts viz., leaves, nodes, roots and seeds revealed that the maximum content of both sennoside A (3816.10 µg/g fresh wt.) and sennoside B (646.74 µg/g fresh wt.) occur in leaf. Elicitation in sennoside content in leaf callus therefore, was achieved employing organic elicitors (glycine, myo-inositol, glutamine, proline, yeast extract, casein hydrolysate and sucrose) as well as precursors (α-keto glutaric acid and pyruvic acid) of anthraquinone pathway. Though there was enhancement at all levels of stress, the optimum elicitation in sennoside A and B was seen at 0.1 % pyruvic acid, their respective percentages being 16 and 32 %. Overall improvement in sennoside A and B content was seen in the order: pyruvic acid &gt; α-keto-glutaric acid &gt; sucrose &gt; yeast extract &gt; glycine &gt; myo-inositol &gt; proline &gt; casein hydrolysate &gt; glutamine. Most importantly, isochorismate synthase (ics), the key enzyme gene involved in the anthraquinone biosynthetic pathway has also been cloned from leaf and sequenced which comprised of 1377 bp. Neighbor joining tree generated through MEGA6 analysis of the nucleotide sequences revealed varied degree of homology with the ics gene sequences of Morus notabilis, Medicago truncatula, Solanum lycopersicum, Cicer arietinum, Glycine max, etc. This is the first report of elicitation of sennoside A and B from leaf callus cultures and cloning of ics gene in C. angustifolia.</description><subject>Acids</subject><subject>Alfalfa</subject><subject>Anthraquinone</subject><subject>Anthraquinones</subject><subject>Bioactive compounds</subject><subject>biochemical pathways</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Callus</subject><subject>callus culture</subject><subject>Casein</subject><subject>casein hydrolysates</subject><subject>Cassia angustifolia</subject><subject>Cicer arietinum</subject><subject>Cloning</subject><subject>elicitors</subject><subject>Gene sequencing</subject><subject>genes</subject><subject>Glutamine</subject><subject>glutaric acid</subject><subject>Glycine max</subject><subject>Glycosides</subject><subject>High-performance liquid chromatography</subject><subject>Homology</subject><subject>Inositol</subject><subject>Isochorismate synthase</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Liquid chromatography</subject><subject>Medicago truncatula</subject><subject>Morus</subject><subject>myo-inositol</subject><subject>neoplasms</subject><subject>nucleotide sequences</subject><subject>Nucleotides</subject><subject>Original Article</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Precursors</subject><subject>Proline</subject><subject>Pyruvic acid</subject><subject>roots</subject><subject>Seeds</subject><subject>Senna alexandrina</subject><subject>Solanum</subject><subject>Solanum lycopersicum</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Tumor cell lines</subject><subject>Yeast</subject><subject>yeast extract</subject><subject>Yeasts</subject><issn>0167-6857</issn><issn>1573-5044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kkGL1TAUhYso-Hz6A1wZcOOm403aNO1SHo4OjLjQcRvy0ps2Y1_yzG0fzM_yH5paQXDhKtxwzncPOSmKlxyuOIB6S5yLGkrgsoQOZMkfFTsuVVVKqOvHxQ54o8qmlepp8YzoHgCaqua74ucnk75jzzCMJlg8YZhZdIwwhEi-R3b00djZX5DZeDrHJfTE5jHFZRjZOaFdEsXEHGLvw8B8YAdD5A0zYVho9i5Oefhmxinf9MxOMay6vMJTtGNMnk5mRkYPYR4NIRswYMZc4nTJsTLPz7SG-C1A8vS8eOLMRPjiz7kv7q7ffz18LG8_f7g5vLstbV1XcymcldhUTjRHy_EopBOyahV0DpW0neBWWC7B8rpFsFK1tXECKlAWnLWdqvbFm417TvHHgjTrkyeL02QCxoU0V63q2gayaV-8_kd6H5cUcjothOyqrqrbFcg3lU2RKKHT5-RPJj1oDnotUW8l6lyiXkvUPHvE5qGsDQOmv-T_mV5tJmeiNkN-Yn33ReQfAMCBd1JUvwDUf6yH</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Chetri, Siva K</creator><creator>Kapoor, Himanshi</creator><creator>Agrawal, Veena</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20160201</creationdate><title>Marked enhancement of sennoside bioactive compounds through precursor feeding in Cassia angustifolia Vahl and cloning of isochorismate synthase gene involved in its biosynthesis</title><author>Chetri, Siva K ; Kapoor, Himanshi ; Agrawal, Veena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-2fc5e63f26bc1eb25f2538709fe75c921c2c150c148e0c5784af20307c0fcc973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acids</topic><topic>Alfalfa</topic><topic>Anthraquinone</topic><topic>Anthraquinones</topic><topic>Bioactive compounds</topic><topic>biochemical pathways</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Callus</topic><topic>callus culture</topic><topic>Casein</topic><topic>casein hydrolysates</topic><topic>Cassia angustifolia</topic><topic>Cicer arietinum</topic><topic>Cloning</topic><topic>elicitors</topic><topic>Gene sequencing</topic><topic>genes</topic><topic>Glutamine</topic><topic>glutaric acid</topic><topic>Glycine max</topic><topic>Glycosides</topic><topic>High-performance liquid chromatography</topic><topic>Homology</topic><topic>Inositol</topic><topic>Isochorismate synthase</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Liquid chromatography</topic><topic>Medicago truncatula</topic><topic>Morus</topic><topic>myo-inositol</topic><topic>neoplasms</topic><topic>nucleotide sequences</topic><topic>Nucleotides</topic><topic>Original Article</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Precursors</topic><topic>Proline</topic><topic>Pyruvic acid</topic><topic>roots</topic><topic>Seeds</topic><topic>Senna alexandrina</topic><topic>Solanum</topic><topic>Solanum lycopersicum</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Tumor cell lines</topic><topic>Yeast</topic><topic>yeast extract</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chetri, Siva K</creatorcontrib><creatorcontrib>Kapoor, Himanshi</creatorcontrib><creatorcontrib>Agrawal, Veena</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Plant cell, tissue and organ culture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chetri, Siva K</au><au>Kapoor, Himanshi</au><au>Agrawal, Veena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marked enhancement of sennoside bioactive compounds through precursor feeding in Cassia angustifolia Vahl and cloning of isochorismate synthase gene involved in its biosynthesis</atitle><jtitle>Plant cell, tissue and organ culture</jtitle><stitle>Plant Cell Tiss Organ Cult</stitle><date>2016-02-01</date><risdate>2016</risdate><volume>124</volume><issue>2</issue><spage>431</spage><epage>446</epage><pages>431-446</pages><issn>0167-6857</issn><eissn>1573-5044</eissn><abstract>Cassia angustifolia Vahl, a chief source of anthraquinone glycosides (sennosides), extensively employed as a laxative is also reported to possess significant anticancerous activity against various cancer cell lines. HPLC analysis of different in vivo plant parts viz., leaves, nodes, roots and seeds revealed that the maximum content of both sennoside A (3816.10 µg/g fresh wt.) and sennoside B (646.74 µg/g fresh wt.) occur in leaf. Elicitation in sennoside content in leaf callus therefore, was achieved employing organic elicitors (glycine, myo-inositol, glutamine, proline, yeast extract, casein hydrolysate and sucrose) as well as precursors (α-keto glutaric acid and pyruvic acid) of anthraquinone pathway. Though there was enhancement at all levels of stress, the optimum elicitation in sennoside A and B was seen at 0.1 % pyruvic acid, their respective percentages being 16 and 32 %. Overall improvement in sennoside A and B content was seen in the order: pyruvic acid &gt; α-keto-glutaric acid &gt; sucrose &gt; yeast extract &gt; glycine &gt; myo-inositol &gt; proline &gt; casein hydrolysate &gt; glutamine. Most importantly, isochorismate synthase (ics), the key enzyme gene involved in the anthraquinone biosynthetic pathway has also been cloned from leaf and sequenced which comprised of 1377 bp. Neighbor joining tree generated through MEGA6 analysis of the nucleotide sequences revealed varied degree of homology with the ics gene sequences of Morus notabilis, Medicago truncatula, Solanum lycopersicum, Cicer arietinum, Glycine max, etc. This is the first report of elicitation of sennoside A and B from leaf callus cultures and cloning of ics gene in C. angustifolia.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11240-015-0905-1</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6857
ispartof Plant cell, tissue and organ culture, 2016-02, Vol.124 (2), p.431-446
issn 0167-6857
1573-5044
language eng
recordid cdi_proquest_miscellaneous_1787986020
source SpringerNature Journals
subjects Acids
Alfalfa
Anthraquinone
Anthraquinones
Bioactive compounds
biochemical pathways
Biomedical and Life Sciences
Biosynthesis
Callus
callus culture
Casein
casein hydrolysates
Cassia angustifolia
Cicer arietinum
Cloning
elicitors
Gene sequencing
genes
Glutamine
glutaric acid
Glycine max
Glycosides
High-performance liquid chromatography
Homology
Inositol
Isochorismate synthase
Leaves
Life Sciences
Liquid chromatography
Medicago truncatula
Morus
myo-inositol
neoplasms
nucleotide sequences
Nucleotides
Original Article
Plant Genetics and Genomics
Plant Pathology
Plant Physiology
Plant Sciences
Precursors
Proline
Pyruvic acid
roots
Seeds
Senna alexandrina
Solanum
Solanum lycopersicum
Sucrose
Sugar
Tumor cell lines
Yeast
yeast extract
Yeasts
title Marked enhancement of sennoside bioactive compounds through precursor feeding in Cassia angustifolia Vahl and cloning of isochorismate synthase gene involved in its biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marked%20enhancement%20of%20sennoside%20bioactive%20compounds%20through%20precursor%20feeding%20in%20Cassia%20angustifolia%20Vahl%20and%20cloning%20of%20isochorismate%20synthase%20gene%20involved%20in%20its%20biosynthesis&rft.jtitle=Plant%20cell,%20tissue%20and%20organ%20culture&rft.au=Chetri,%20Siva%20K&rft.date=2016-02-01&rft.volume=124&rft.issue=2&rft.spage=431&rft.epage=446&rft.pages=431-446&rft.issn=0167-6857&rft.eissn=1573-5044&rft_id=info:doi/10.1007/s11240-015-0905-1&rft_dat=%3Cproquest_cross%3E1787986020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259393487&rft_id=info:pmid/&rfr_iscdi=true