Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae
Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae . In this study, geraniol, a valuable ac...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2016-05, Vol.100 (10), p.4561-4571 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4571 |
---|---|
container_issue | 10 |
container_start_page | 4561 |
container_title | Applied microbiology and biotechnology |
container_volume | 100 |
creator | Zhao, Jianzhi Bao, Xiaoming Li, Chen Shen, Yu Hou, Jin |
description | Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in
Saccharomyces cerevisiae
. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in
S. cerevisiae
. We evaluated three geraniol synthases in
S. cerevisiae
, and the geraniol synthase
Valeriana officinalis
(tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants
ERG20
G
(
ERG20
K197G
) and
ERG20
WW
(
ERG20
F96W-N127W
), and controlling endogenous
ERG20
expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing
IDI1
,
tHMG1
, and
UPC2-1
. The results showed that overexpressing
ERG20
WW
and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous
ERG20
expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered
S. cerevisiae
strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes. |
doi_str_mv | 10.1007/s00253-016-7375-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787985513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A450832498</galeid><sourcerecordid>A450832498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c609t-c43cc6d4679ec68598743adf18f2fb5d26a2f6afa41d64090ba751ac06b80e03</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhi0EokvhB3BBkbjAIcVfcZxjVVFYqRIS7d3yOpPEVWIH21mx_x5vUz4WgXywNPO8o3k1L0KvCb4gGNcfIsa0YiUmoqxZXZXkCdoQzmiJBeFP0QaTXKyrRp6hFzHeY0yoFOI5OqNCSsa42KD9dpqD31vXF5N3PkGYwUHRQ9DO-rHIzXYxyXpXpCH4pR_W3mEsWjsPPs6DTlDEg0sDRBuLAP0y6geBdcWtNmbQwU8HA7EwEGBvo9XwEj3r9Bjh1eN_ju6uP95dfS5vvnzaXl3elEbgJpWGM2NEy0XdgBEyO6k5021HZEe7XdVSoWkndKc5aQXHDd7puiLaYLGTGDA7R-_WsdnGtwViUpONBsZRO_BLVKSWdSOrirCMvv0LvfdLcHm5I5U3oIKL31SvR1DWdT4FbY5D1SWvsGSUNzJTF_-g8mthssY76Gyunwjenwgyk-B76vUSo9refj1lycqa4GMM0Kk52EmHgyJYHWOh1lioHAt1jIUiWfPm0dyym6D9pfiZgwzQFYi55fKF_3D_36k_APU0wx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784672646</pqid></control><display><type>article</type><title>Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>SpringerLink_现刊</source><creator>Zhao, Jianzhi ; Bao, Xiaoming ; Li, Chen ; Shen, Yu ; Hou, Jin</creator><creatorcontrib>Zhao, Jianzhi ; Bao, Xiaoming ; Li, Chen ; Shen, Yu ; Hou, Jin</creatorcontrib><description>Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in
Saccharomyces cerevisiae
. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in
S. cerevisiae
. We evaluated three geraniol synthases in
S. cerevisiae
, and the geraniol synthase
Valeriana officinalis
(tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants
ERG20
G
(
ERG20
K197G
) and
ERG20
WW
(
ERG20
F96W-N127W
), and controlling endogenous
ERG20
expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing
IDI1
,
tHMG1
, and
UPC2-1
. The results showed that overexpressing
ERG20
WW
and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous
ERG20
expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered
S. cerevisiae
strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-016-7375-1</identifier><identifier>PMID: 26883346</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino acids ; Analysis ; Applied Microbial and Cell Physiology ; Batch Cell Culture Techniques ; Biodiesel fuels ; Biofuels ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Chemical properties ; Cosmetics ; Diphosphates - metabolism ; Diterpenes - metabolism ; Down-Regulation ; Escherichia coli - genetics ; Gene Expression Regulation, Fungal ; Industrial Microbiology ; Life Sciences ; Metabolism ; Mevalonic Acid - metabolism ; Microbial Genetics and Genomics ; Microbiology ; Monoterpenes ; Monoterpenes - metabolism ; Plasmids ; Plasmids - genetics ; Production processes ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sesquiterpenes - metabolism ; Studies ; Terpenes ; Terpenes - metabolism ; Valeriana officinalis ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2016-05, Vol.100 (10), p.4561-4571</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c609t-c43cc6d4679ec68598743adf18f2fb5d26a2f6afa41d64090ba751ac06b80e03</citedby><cites>FETCH-LOGICAL-c609t-c43cc6d4679ec68598743adf18f2fb5d26a2f6afa41d64090ba751ac06b80e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-016-7375-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-016-7375-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26883346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Jianzhi</creatorcontrib><creatorcontrib>Bao, Xiaoming</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Shen, Yu</creatorcontrib><creatorcontrib>Hou, Jin</creatorcontrib><title>Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in
Saccharomyces cerevisiae
. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in
S. cerevisiae
. We evaluated three geraniol synthases in
S. cerevisiae
, and the geraniol synthase
Valeriana officinalis
(tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants
ERG20
G
(
ERG20
K197G
) and
ERG20
WW
(
ERG20
F96W-N127W
), and controlling endogenous
ERG20
expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing
IDI1
,
tHMG1
, and
UPC2-1
. The results showed that overexpressing
ERG20
WW
and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous
ERG20
expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered
S. cerevisiae
strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Applied Microbial and Cell Physiology</subject><subject>Batch Cell Culture Techniques</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Chemical properties</subject><subject>Cosmetics</subject><subject>Diphosphates - metabolism</subject><subject>Diterpenes - metabolism</subject><subject>Down-Regulation</subject><subject>Escherichia coli - genetics</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Industrial Microbiology</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Mevalonic Acid - metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Monoterpenes</subject><subject>Monoterpenes - metabolism</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>Production processes</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sesquiterpenes - metabolism</subject><subject>Studies</subject><subject>Terpenes</subject><subject>Terpenes - metabolism</subject><subject>Valeriana officinalis</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kk1v1DAQhi0EokvhB3BBkbjAIcVfcZxjVVFYqRIS7d3yOpPEVWIH21mx_x5vUz4WgXywNPO8o3k1L0KvCb4gGNcfIsa0YiUmoqxZXZXkCdoQzmiJBeFP0QaTXKyrRp6hFzHeY0yoFOI5OqNCSsa42KD9dpqD31vXF5N3PkGYwUHRQ9DO-rHIzXYxyXpXpCH4pR_W3mEsWjsPPs6DTlDEg0sDRBuLAP0y6geBdcWtNmbQwU8HA7EwEGBvo9XwEj3r9Bjh1eN_ju6uP95dfS5vvnzaXl3elEbgJpWGM2NEy0XdgBEyO6k5021HZEe7XdVSoWkndKc5aQXHDd7puiLaYLGTGDA7R-_WsdnGtwViUpONBsZRO_BLVKSWdSOrirCMvv0LvfdLcHm5I5U3oIKL31SvR1DWdT4FbY5D1SWvsGSUNzJTF_-g8mthssY76Gyunwjenwgyk-B76vUSo9refj1lycqa4GMM0Kk52EmHgyJYHWOh1lioHAt1jIUiWfPm0dyym6D9pfiZgwzQFYi55fKF_3D_36k_APU0wx4</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Zhao, Jianzhi</creator><creator>Bao, Xiaoming</creator><creator>Li, Chen</creator><creator>Shen, Yu</creator><creator>Hou, Jin</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope></search><sort><creationdate>20160501</creationdate><title>Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae</title><author>Zhao, Jianzhi ; Bao, Xiaoming ; Li, Chen ; Shen, Yu ; Hou, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c609t-c43cc6d4679ec68598743adf18f2fb5d26a2f6afa41d64090ba751ac06b80e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Applied Microbial and Cell Physiology</topic><topic>Batch Cell Culture Techniques</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Chemical properties</topic><topic>Cosmetics</topic><topic>Diphosphates - metabolism</topic><topic>Diterpenes - metabolism</topic><topic>Down-Regulation</topic><topic>Escherichia coli - genetics</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Industrial Microbiology</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Mevalonic Acid - metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Monoterpenes</topic><topic>Monoterpenes - metabolism</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>Production processes</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sesquiterpenes - metabolism</topic><topic>Studies</topic><topic>Terpenes</topic><topic>Terpenes - metabolism</topic><topic>Valeriana officinalis</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jianzhi</creatorcontrib><creatorcontrib>Bao, Xiaoming</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Shen, Yu</creatorcontrib><creatorcontrib>Hou, Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jianzhi</au><au>Bao, Xiaoming</au><au>Li, Chen</au><au>Shen, Yu</au><au>Hou, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>100</volume><issue>10</issue><spage>4561</spage><epage>4571</epage><pages>4561-4571</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in
Saccharomyces cerevisiae
. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in
S. cerevisiae
. We evaluated three geraniol synthases in
S. cerevisiae
, and the geraniol synthase
Valeriana officinalis
(tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants
ERG20
G
(
ERG20
K197G
) and
ERG20
WW
(
ERG20
F96W-N127W
), and controlling endogenous
ERG20
expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing
IDI1
,
tHMG1
, and
UPC2-1
. The results showed that overexpressing
ERG20
WW
and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous
ERG20
expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered
S. cerevisiae
strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26883346</pmid><doi>10.1007/s00253-016-7375-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2016-05, Vol.100 (10), p.4561-4571 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1787985513 |
source | MEDLINE; SpringerLink_现刊 |
subjects | Amino acids Analysis Applied Microbial and Cell Physiology Batch Cell Culture Techniques Biodiesel fuels Biofuels Biomedical and Life Sciences Biosynthesis Biotechnology Chemical properties Cosmetics Diphosphates - metabolism Diterpenes - metabolism Down-Regulation Escherichia coli - genetics Gene Expression Regulation, Fungal Industrial Microbiology Life Sciences Metabolism Mevalonic Acid - metabolism Microbial Genetics and Genomics Microbiology Monoterpenes Monoterpenes - metabolism Plasmids Plasmids - genetics Production processes Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Sesquiterpenes - metabolism Studies Terpenes Terpenes - metabolism Valeriana officinalis Yeast |
title | Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20monoterpene%20geraniol%20production%20through%20geranyl%20diphosphate%20synthesis%20regulation%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Zhao,%20Jianzhi&rft.date=2016-05-01&rft.volume=100&rft.issue=10&rft.spage=4561&rft.epage=4571&rft.pages=4561-4571&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-016-7375-1&rft_dat=%3Cgale_proqu%3EA450832498%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784672646&rft_id=info:pmid/26883346&rft_galeid=A450832498&rfr_iscdi=true |