Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae

Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae . In this study, geraniol, a valuable ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2016-05, Vol.100 (10), p.4561-4571
Hauptverfasser: Zhao, Jianzhi, Bao, Xiaoming, Li, Chen, Shen, Yu, Hou, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4571
container_issue 10
container_start_page 4561
container_title Applied microbiology and biotechnology
container_volume 100
creator Zhao, Jianzhi
Bao, Xiaoming
Li, Chen
Shen, Yu
Hou, Jin
description Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae . In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae . We evaluated three geraniol synthases in S. cerevisiae , and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 G ( ERG20 K197G ) and ERG20 WW ( ERG20 F96W-N127W ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1 , tHMG1 , and UPC2-1 . The results showed that overexpressing ERG20 WW and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.
doi_str_mv 10.1007/s00253-016-7375-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787985513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A450832498</galeid><sourcerecordid>A450832498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c609t-c43cc6d4679ec68598743adf18f2fb5d26a2f6afa41d64090ba751ac06b80e03</originalsourceid><addsrcrecordid>eNp1kk1v1DAQhi0EokvhB3BBkbjAIcVfcZxjVVFYqRIS7d3yOpPEVWIH21mx_x5vUz4WgXywNPO8o3k1L0KvCb4gGNcfIsa0YiUmoqxZXZXkCdoQzmiJBeFP0QaTXKyrRp6hFzHeY0yoFOI5OqNCSsa42KD9dpqD31vXF5N3PkGYwUHRQ9DO-rHIzXYxyXpXpCH4pR_W3mEsWjsPPs6DTlDEg0sDRBuLAP0y6geBdcWtNmbQwU8HA7EwEGBvo9XwEj3r9Bjh1eN_ju6uP95dfS5vvnzaXl3elEbgJpWGM2NEy0XdgBEyO6k5021HZEe7XdVSoWkndKc5aQXHDd7puiLaYLGTGDA7R-_WsdnGtwViUpONBsZRO_BLVKSWdSOrirCMvv0LvfdLcHm5I5U3oIKL31SvR1DWdT4FbY5D1SWvsGSUNzJTF_-g8mthssY76Gyunwjenwgyk-B76vUSo9refj1lycqa4GMM0Kk52EmHgyJYHWOh1lioHAt1jIUiWfPm0dyym6D9pfiZgwzQFYi55fKF_3D_36k_APU0wx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784672646</pqid></control><display><type>article</type><title>Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>SpringerLink_现刊</source><creator>Zhao, Jianzhi ; Bao, Xiaoming ; Li, Chen ; Shen, Yu ; Hou, Jin</creator><creatorcontrib>Zhao, Jianzhi ; Bao, Xiaoming ; Li, Chen ; Shen, Yu ; Hou, Jin</creatorcontrib><description>Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae . In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae . We evaluated three geraniol synthases in S. cerevisiae , and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 G ( ERG20 K197G ) and ERG20 WW ( ERG20 F96W-N127W ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1 , tHMG1 , and UPC2-1 . The results showed that overexpressing ERG20 WW and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-016-7375-1</identifier><identifier>PMID: 26883346</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amino acids ; Analysis ; Applied Microbial and Cell Physiology ; Batch Cell Culture Techniques ; Biodiesel fuels ; Biofuels ; Biomedical and Life Sciences ; Biosynthesis ; Biotechnology ; Chemical properties ; Cosmetics ; Diphosphates - metabolism ; Diterpenes - metabolism ; Down-Regulation ; Escherichia coli - genetics ; Gene Expression Regulation, Fungal ; Industrial Microbiology ; Life Sciences ; Metabolism ; Mevalonic Acid - metabolism ; Microbial Genetics and Genomics ; Microbiology ; Monoterpenes ; Monoterpenes - metabolism ; Plasmids ; Plasmids - genetics ; Production processes ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sesquiterpenes - metabolism ; Studies ; Terpenes ; Terpenes - metabolism ; Valeriana officinalis ; Yeast</subject><ispartof>Applied microbiology and biotechnology, 2016-05, Vol.100 (10), p.4561-4571</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c609t-c43cc6d4679ec68598743adf18f2fb5d26a2f6afa41d64090ba751ac06b80e03</citedby><cites>FETCH-LOGICAL-c609t-c43cc6d4679ec68598743adf18f2fb5d26a2f6afa41d64090ba751ac06b80e03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-016-7375-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-016-7375-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26883346$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Jianzhi</creatorcontrib><creatorcontrib>Bao, Xiaoming</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Shen, Yu</creatorcontrib><creatorcontrib>Hou, Jin</creatorcontrib><title>Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae . In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae . We evaluated three geraniol synthases in S. cerevisiae , and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 G ( ERG20 K197G ) and ERG20 WW ( ERG20 F96W-N127W ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1 , tHMG1 , and UPC2-1 . The results showed that overexpressing ERG20 WW and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Applied Microbial and Cell Physiology</subject><subject>Batch Cell Culture Techniques</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Chemical properties</subject><subject>Cosmetics</subject><subject>Diphosphates - metabolism</subject><subject>Diterpenes - metabolism</subject><subject>Down-Regulation</subject><subject>Escherichia coli - genetics</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Industrial Microbiology</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Mevalonic Acid - metabolism</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Monoterpenes</subject><subject>Monoterpenes - metabolism</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>Production processes</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sesquiterpenes - metabolism</subject><subject>Studies</subject><subject>Terpenes</subject><subject>Terpenes - metabolism</subject><subject>Valeriana officinalis</subject><subject>Yeast</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kk1v1DAQhi0EokvhB3BBkbjAIcVfcZxjVVFYqRIS7d3yOpPEVWIH21mx_x5vUz4WgXywNPO8o3k1L0KvCb4gGNcfIsa0YiUmoqxZXZXkCdoQzmiJBeFP0QaTXKyrRp6hFzHeY0yoFOI5OqNCSsa42KD9dpqD31vXF5N3PkGYwUHRQ9DO-rHIzXYxyXpXpCH4pR_W3mEsWjsPPs6DTlDEg0sDRBuLAP0y6geBdcWtNmbQwU8HA7EwEGBvo9XwEj3r9Bjh1eN_ju6uP95dfS5vvnzaXl3elEbgJpWGM2NEy0XdgBEyO6k5021HZEe7XdVSoWkndKc5aQXHDd7puiLaYLGTGDA7R-_WsdnGtwViUpONBsZRO_BLVKSWdSOrirCMvv0LvfdLcHm5I5U3oIKL31SvR1DWdT4FbY5D1SWvsGSUNzJTF_-g8mthssY76Gyunwjenwgyk-B76vUSo9refj1lycqa4GMM0Kk52EmHgyJYHWOh1lioHAt1jIUiWfPm0dyym6D9pfiZgwzQFYi55fKF_3D_36k_APU0wx4</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Zhao, Jianzhi</creator><creator>Bao, Xiaoming</creator><creator>Li, Chen</creator><creator>Shen, Yu</creator><creator>Hou, Jin</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope></search><sort><creationdate>20160501</creationdate><title>Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae</title><author>Zhao, Jianzhi ; Bao, Xiaoming ; Li, Chen ; Shen, Yu ; Hou, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c609t-c43cc6d4679ec68598743adf18f2fb5d26a2f6afa41d64090ba751ac06b80e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Applied Microbial and Cell Physiology</topic><topic>Batch Cell Culture Techniques</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Chemical properties</topic><topic>Cosmetics</topic><topic>Diphosphates - metabolism</topic><topic>Diterpenes - metabolism</topic><topic>Down-Regulation</topic><topic>Escherichia coli - genetics</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Industrial Microbiology</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Mevalonic Acid - metabolism</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Monoterpenes</topic><topic>Monoterpenes - metabolism</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>Production processes</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sesquiterpenes - metabolism</topic><topic>Studies</topic><topic>Terpenes</topic><topic>Terpenes - metabolism</topic><topic>Valeriana officinalis</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jianzhi</creatorcontrib><creatorcontrib>Bao, Xiaoming</creatorcontrib><creatorcontrib>Li, Chen</creatorcontrib><creatorcontrib>Shen, Yu</creatorcontrib><creatorcontrib>Hou, Jin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Biological Sciences</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jianzhi</au><au>Bao, Xiaoming</au><au>Li, Chen</au><au>Shen, Yu</au><au>Hou, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>100</volume><issue>10</issue><spage>4561</spage><epage>4571</epage><pages>4561-4571</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae . In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae . We evaluated three geraniol synthases in S. cerevisiae , and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 G ( ERG20 K197G ) and ERG20 WW ( ERG20 F96W-N127W ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1 , tHMG1 , and UPC2-1 . The results showed that overexpressing ERG20 WW and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26883346</pmid><doi>10.1007/s00253-016-7375-1</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2016-05, Vol.100 (10), p.4561-4571
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1787985513
source MEDLINE; SpringerLink_现刊
subjects Amino acids
Analysis
Applied Microbial and Cell Physiology
Batch Cell Culture Techniques
Biodiesel fuels
Biofuels
Biomedical and Life Sciences
Biosynthesis
Biotechnology
Chemical properties
Cosmetics
Diphosphates - metabolism
Diterpenes - metabolism
Down-Regulation
Escherichia coli - genetics
Gene Expression Regulation, Fungal
Industrial Microbiology
Life Sciences
Metabolism
Mevalonic Acid - metabolism
Microbial Genetics and Genomics
Microbiology
Monoterpenes
Monoterpenes - metabolism
Plasmids
Plasmids - genetics
Production processes
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sesquiterpenes - metabolism
Studies
Terpenes
Terpenes - metabolism
Valeriana officinalis
Yeast
title Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20monoterpene%20geraniol%20production%20through%20geranyl%20diphosphate%20synthesis%20regulation%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Zhao,%20Jianzhi&rft.date=2016-05-01&rft.volume=100&rft.issue=10&rft.spage=4561&rft.epage=4571&rft.pages=4561-4571&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-016-7375-1&rft_dat=%3Cgale_proqu%3EA450832498%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1784672646&rft_id=info:pmid/26883346&rft_galeid=A450832498&rfr_iscdi=true