Optimization of Energy Consumption and Mass Transfer Parameters in a Surface Aeration Vessel

This paper reports tests on a lab-scale surface aeration vessel was equipped with a Rushton turbine to examine its performance in terms of standard aeration efficiency (SAE), mixing time, and void fraction characteristics. These characteristics were investigated by tests using variations of rotor sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water environment research 2016-04, Vol.88 (4), p.355-366
Hauptverfasser: Mohammadpour, A., AkhavanBehabadi, M. A., Ebrahimzadeh, M., Raisee, M., MajdiNasab, A. R., Nosrati, M., Mousavi, S. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue 4
container_start_page 355
container_title Water environment research
container_volume 88
creator Mohammadpour, A.
AkhavanBehabadi, M. A.
Ebrahimzadeh, M.
Raisee, M.
MajdiNasab, A. R.
Nosrati, M.
Mousavi, S. M.
description This paper reports tests on a lab-scale surface aeration vessel was equipped with a Rushton turbine to examine its performance in terms of standard aeration efficiency (SAE), mixing time, and void fraction characteristics. These characteristics were investigated by tests using variations of rotor speed, impeller immersion depth, and water level. Results showed that variation of impeller immersion depth had a greater effect on the SAE compared to variation of water level. Moreover, the SAE increased with rotor speeds up to about 150 to 200 rpm and then decreased. In addition, void fraction improved by impeller immersion depth and rotor speed enhancement; however, mixing time and power number were reduced as rotor speed increased. According to the response surface methodology statistical optimizations, optimum values for rotor speed, impeller immersion depth, and water level were 168.90 rpm, 25 mm, and 30 cm, respectively, to achieve the maximum value of SAE.
doi_str_mv 10.2175/106143016X14504669768093
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787984989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45018932</jstor_id><sourcerecordid>45018932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4525-149e2b982ff82ad12073ca39bdd3772815f4d68fc27fec1909e80e5f460bea733</originalsourceid><addsrcrecordid>eNqNkU1rFEEQhhtRTIz-BKXBi5cxXf3dBw9hWU0gISFGzSEw9M5UyyzzsXbPIJtfb6-T5BAI5FRF9fO-RddLCAX2mYNRh8A0SMFAX4NUTGrtjLbMiRdkH5SShVECXuY-Y0XmxB55k9KaMeCcyddkjxsQwJTbJzfnm7Hpmls_NkNPh0CXPcbfW7oY-jR1m_9T39f0zKdEr6LvU8BIL3z0HY4YE23yO_0-xeArpEcYZ6OfmBK2b8mr4NuE7-7qAfnxdXm1OC5Oz7-dLI5Oi0oqrgqQDvnKWR6C5b4GzoyovHCruhbGcAsqyFrbUHETsALHHFqGeajZCr0R4oB8mn03cfgzYRrLrkkVtq3vcZhSCcYaZ6Wz7jmoVqDzVTP68RG6HqbY54_sKKEdM2xH2Zmq4pBSxFBuYtP5uC2BlbuwyqfCytIPdwumVYf1g_A-nQx8mYG_TYvbZxuXv5aXTCiV9e9n_TqNQ3zQZxjyKbj4B4N6qJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783690700</pqid></control><display><type>article</type><title>Optimization of Energy Consumption and Mass Transfer Parameters in a Surface Aeration Vessel</title><source>MEDLINE</source><source>Wiley Online Library</source><source>JSTOR</source><creator>Mohammadpour, A. ; AkhavanBehabadi, M. A. ; Ebrahimzadeh, M. ; Raisee, M. ; MajdiNasab, A. R. ; Nosrati, M. ; Mousavi, S. M.</creator><creatorcontrib>Mohammadpour, A. ; AkhavanBehabadi, M. A. ; Ebrahimzadeh, M. ; Raisee, M. ; MajdiNasab, A. R. ; Nosrati, M. ; Mousavi, S. M.</creatorcontrib><description>This paper reports tests on a lab-scale surface aeration vessel was equipped with a Rushton turbine to examine its performance in terms of standard aeration efficiency (SAE), mixing time, and void fraction characteristics. These characteristics were investigated by tests using variations of rotor speed, impeller immersion depth, and water level. Results showed that variation of impeller immersion depth had a greater effect on the SAE compared to variation of water level. Moreover, the SAE increased with rotor speeds up to about 150 to 200 rpm and then decreased. In addition, void fraction improved by impeller immersion depth and rotor speed enhancement; however, mixing time and power number were reduced as rotor speed increased. According to the response surface methodology statistical optimizations, optimum values for rotor speed, impeller immersion depth, and water level were 168.90 rpm, 25 mm, and 30 cm, respectively, to achieve the maximum value of SAE.</description><identifier>ISSN: 1061-4303</identifier><identifier>EISSN: 1554-7531</identifier><identifier>DOI: 10.2175/106143016X14504669768093</identifier><identifier>PMID: 27131059</identifier><language>eng</language><publisher>United States: THE WATER ENVIRONMENT FEDERATION</publisher><subject>Bioreactors ; Comparative analysis ; Energy consumption ; Optimization ; Oxygen - chemistry ; response surface methodology ; standard aeration efficiency ; statistical evaluation ; surface aeration ; Turbines ; Velocity ; Waste Disposal, Fluid - instrumentation ; Waste Disposal, Fluid - methods ; Waste Water - chemistry ; Water Purification</subject><ispartof>Water environment research, 2016-04, Vol.88 (4), p.355-366</ispartof><rights>2016 WATER ENVIRONMENT FEDERATION (WEF)</rights><rights>2016 Water Environment Federation</rights><rights>Copyright Water Environment Federation Apr 1, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4525-149e2b982ff82ad12073ca39bdd3772815f4d68fc27fec1909e80e5f460bea733</citedby><cites>FETCH-LOGICAL-c4525-149e2b982ff82ad12073ca39bdd3772815f4d68fc27fec1909e80e5f460bea733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45018932$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45018932$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1416,27922,27923,45572,45573,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27131059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohammadpour, A.</creatorcontrib><creatorcontrib>AkhavanBehabadi, M. A.</creatorcontrib><creatorcontrib>Ebrahimzadeh, M.</creatorcontrib><creatorcontrib>Raisee, M.</creatorcontrib><creatorcontrib>MajdiNasab, A. R.</creatorcontrib><creatorcontrib>Nosrati, M.</creatorcontrib><creatorcontrib>Mousavi, S. M.</creatorcontrib><title>Optimization of Energy Consumption and Mass Transfer Parameters in a Surface Aeration Vessel</title><title>Water environment research</title><addtitle>Water Environ Res</addtitle><description>This paper reports tests on a lab-scale surface aeration vessel was equipped with a Rushton turbine to examine its performance in terms of standard aeration efficiency (SAE), mixing time, and void fraction characteristics. These characteristics were investigated by tests using variations of rotor speed, impeller immersion depth, and water level. Results showed that variation of impeller immersion depth had a greater effect on the SAE compared to variation of water level. Moreover, the SAE increased with rotor speeds up to about 150 to 200 rpm and then decreased. In addition, void fraction improved by impeller immersion depth and rotor speed enhancement; however, mixing time and power number were reduced as rotor speed increased. According to the response surface methodology statistical optimizations, optimum values for rotor speed, impeller immersion depth, and water level were 168.90 rpm, 25 mm, and 30 cm, respectively, to achieve the maximum value of SAE.</description><subject>Bioreactors</subject><subject>Comparative analysis</subject><subject>Energy consumption</subject><subject>Optimization</subject><subject>Oxygen - chemistry</subject><subject>response surface methodology</subject><subject>standard aeration efficiency</subject><subject>statistical evaluation</subject><subject>surface aeration</subject><subject>Turbines</subject><subject>Velocity</subject><subject>Waste Disposal, Fluid - instrumentation</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Waste Water - chemistry</subject><subject>Water Purification</subject><issn>1061-4303</issn><issn>1554-7531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1rFEEQhhtRTIz-BKXBi5cxXf3dBw9hWU0gISFGzSEw9M5UyyzzsXbPIJtfb6-T5BAI5FRF9fO-RddLCAX2mYNRh8A0SMFAX4NUTGrtjLbMiRdkH5SShVECXuY-Y0XmxB55k9KaMeCcyddkjxsQwJTbJzfnm7Hpmls_NkNPh0CXPcbfW7oY-jR1m_9T39f0zKdEr6LvU8BIL3z0HY4YE23yO_0-xeArpEcYZ6OfmBK2b8mr4NuE7-7qAfnxdXm1OC5Oz7-dLI5Oi0oqrgqQDvnKWR6C5b4GzoyovHCruhbGcAsqyFrbUHETsALHHFqGeajZCr0R4oB8mn03cfgzYRrLrkkVtq3vcZhSCcYaZ6Wz7jmoVqDzVTP68RG6HqbY54_sKKEdM2xH2Zmq4pBSxFBuYtP5uC2BlbuwyqfCytIPdwumVYf1g_A-nQx8mYG_TYvbZxuXv5aXTCiV9e9n_TqNQ3zQZxjyKbj4B4N6qJA</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Mohammadpour, A.</creator><creator>AkhavanBehabadi, M. A.</creator><creator>Ebrahimzadeh, M.</creator><creator>Raisee, M.</creator><creator>MajdiNasab, A. R.</creator><creator>Nosrati, M.</creator><creator>Mousavi, S. M.</creator><general>THE WATER ENVIRONMENT FEDERATION</general><general>Water Environment Federation</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20160401</creationdate><title>Optimization of Energy Consumption and Mass Transfer Parameters in a Surface Aeration Vessel</title><author>Mohammadpour, A. ; AkhavanBehabadi, M. A. ; Ebrahimzadeh, M. ; Raisee, M. ; MajdiNasab, A. R. ; Nosrati, M. ; Mousavi, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4525-149e2b982ff82ad12073ca39bdd3772815f4d68fc27fec1909e80e5f460bea733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bioreactors</topic><topic>Comparative analysis</topic><topic>Energy consumption</topic><topic>Optimization</topic><topic>Oxygen - chemistry</topic><topic>response surface methodology</topic><topic>standard aeration efficiency</topic><topic>statistical evaluation</topic><topic>surface aeration</topic><topic>Turbines</topic><topic>Velocity</topic><topic>Waste Disposal, Fluid - instrumentation</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Waste Water - chemistry</topic><topic>Water Purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadpour, A.</creatorcontrib><creatorcontrib>AkhavanBehabadi, M. A.</creatorcontrib><creatorcontrib>Ebrahimzadeh, M.</creatorcontrib><creatorcontrib>Raisee, M.</creatorcontrib><creatorcontrib>MajdiNasab, A. R.</creatorcontrib><creatorcontrib>Nosrati, M.</creatorcontrib><creatorcontrib>Mousavi, S. M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Water environment research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadpour, A.</au><au>AkhavanBehabadi, M. A.</au><au>Ebrahimzadeh, M.</au><au>Raisee, M.</au><au>MajdiNasab, A. R.</au><au>Nosrati, M.</au><au>Mousavi, S. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of Energy Consumption and Mass Transfer Parameters in a Surface Aeration Vessel</atitle><jtitle>Water environment research</jtitle><addtitle>Water Environ Res</addtitle><date>2016-04-01</date><risdate>2016</risdate><volume>88</volume><issue>4</issue><spage>355</spage><epage>366</epage><pages>355-366</pages><issn>1061-4303</issn><eissn>1554-7531</eissn><abstract>This paper reports tests on a lab-scale surface aeration vessel was equipped with a Rushton turbine to examine its performance in terms of standard aeration efficiency (SAE), mixing time, and void fraction characteristics. These characteristics were investigated by tests using variations of rotor speed, impeller immersion depth, and water level. Results showed that variation of impeller immersion depth had a greater effect on the SAE compared to variation of water level. Moreover, the SAE increased with rotor speeds up to about 150 to 200 rpm and then decreased. In addition, void fraction improved by impeller immersion depth and rotor speed enhancement; however, mixing time and power number were reduced as rotor speed increased. According to the response surface methodology statistical optimizations, optimum values for rotor speed, impeller immersion depth, and water level were 168.90 rpm, 25 mm, and 30 cm, respectively, to achieve the maximum value of SAE.</abstract><cop>United States</cop><pub>THE WATER ENVIRONMENT FEDERATION</pub><pmid>27131059</pmid><doi>10.2175/106143016X14504669768093</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-4303
ispartof Water environment research, 2016-04, Vol.88 (4), p.355-366
issn 1061-4303
1554-7531
language eng
recordid cdi_proquest_miscellaneous_1787984989
source MEDLINE; Wiley Online Library; JSTOR
subjects Bioreactors
Comparative analysis
Energy consumption
Optimization
Oxygen - chemistry
response surface methodology
standard aeration efficiency
statistical evaluation
surface aeration
Turbines
Velocity
Waste Disposal, Fluid - instrumentation
Waste Disposal, Fluid - methods
Waste Water - chemistry
Water Purification
title Optimization of Energy Consumption and Mass Transfer Parameters in a Surface Aeration Vessel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20Energy%20Consumption%20and%20Mass%20Transfer%20Parameters%20in%20a%20Surface%20Aeration%20Vessel&rft.jtitle=Water%20environment%20research&rft.au=Mohammadpour,%20A.&rft.date=2016-04-01&rft.volume=88&rft.issue=4&rft.spage=355&rft.epage=366&rft.pages=355-366&rft.issn=1061-4303&rft.eissn=1554-7531&rft_id=info:doi/10.2175/106143016X14504669768093&rft_dat=%3Cjstor_proqu%3E45018932%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1783690700&rft_id=info:pmid/27131059&rft_jstor_id=45018932&rfr_iscdi=true