microcosm study to support aquatic risk assessment of nickel: Community‐level effects and comparison with bioavailability‐normalized species sensitivity distributions
The aquatic risk assessment for nickel (Ni) in the European Union is based on chronic species sensitivity distributions and the use of bioavailability models. To test whether a bioavailability‐based safe threshold of Ni (the hazardous concentration for 5% of species [HC5]) is protective for aquatic...
Gespeichert in:
Veröffentlicht in: | Environmental toxicology and chemistry 2016-05, Vol.35 (5), p.1172-1182 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1182 |
---|---|
container_issue | 5 |
container_start_page | 1172 |
container_title | Environmental toxicology and chemistry |
container_volume | 35 |
creator | Hommen, Udo Knopf, Burkhard Rüdel, Heinz Schäfers, Christoph De Schamphelaere, Karel Schlekat, Chris Garman, Emily Rogevich |
description | The aquatic risk assessment for nickel (Ni) in the European Union is based on chronic species sensitivity distributions and the use of bioavailability models. To test whether a bioavailability‐based safe threshold of Ni (the hazardous concentration for 5% of species [HC5]) is protective for aquatic communities, microcosms were exposed to 5 stable Ni treatments (6–96 μg/L) and a control for 4 mo to assess bioaccumulation and effects on phytoplankton, periphyton, zooplankton, and snails. Concentrations of Ni in the periphyton, macrophytes, and snails measured at the end of the exposure period increased in a dose‐dependent manner but did not indicate biomagnification. Abundance of phytoplankton and snails decreased in 48 μg Ni/L and 96 μg Ni/L treatments, which may have indirectly affected the abundance of zooplankton and periphyton. Exposure up to 24 μg Ni/L had no adverse effects on algae and zooplankton, whereas the rate of population decline of the snails at 24 μg Ni/L was significantly higher than in the controls. Therefore, the study‐specific overall no‐observed‐adverse‐effect concentration (NOAEC) is 12 μg Ni/L. This NOAEC is approximately twice the HC5 derived from a chronic species sensitivity distribution considering the specific water chemistry of the microcosm by means of bioavailability models. Thus, the present study provides support to the protectiveness of the bioavailability‐normalized HC5 for freshwater communities. Environ Toxicol Chem 2016;35:1172–1182. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC. |
doi_str_mv | 10.1002/etc.3255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787971487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4025807451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5855-450fbed67950e1bebbf7315eb4a1961310a21743eb0b5c5a21659d7b5ce9222a3</originalsourceid><addsrcrecordid>eNp10kFu1DAUBuAIgei0IHECsMSmmxTbieOEHYyYglRgARVLy3ZewJ0kTv2cKcOKI3AOjsVJ8GiGIiGxsi19_mW931n2iNEzRil_BtGeFVyIO9mCCcHzumL13WxBZUFzyav6KDtGvKKUVU3T3M-OeFXUUlblIvs5OBu89TgQjHO7JdETnKfJh0j09ayjsyQ4XBONCIgDjJH4jozOrqF_TpZ-GObRxe2v7z962EBPoOvARiR6bIn1w6TTbT-SGxe_EOO83mjXa-P6_Z3Rh0H37hu0BCewDpAgjOii2yRAWocxODNH50d8kN3rdI_w8LCeZJerVx-Xr_OL9-dvli8ucitqIfJS0M5AW8lGUGAGjOlkwQSYUrOmYgWjmjNZFmCoEVakQyWaVqY9NJxzXZxkp_vcKfjrGTCqwaGFvtcj-BkVk7VsJCtrmejTf-iVn8OYXrdTTJSCleXfwDRpxACdmoIbdNgqRtWuP5X6U7v-En18CJzNAO0t_FNYAvke3Lgetv8NUskcAg8-TRK-3nod1qqShRTq07tztVpyUdOXb9Uq-Sd732mv9OdUnrr8wNPHSZ-nlKIpi99KysMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781545144</pqid></control><display><type>article</type><title>microcosm study to support aquatic risk assessment of nickel: Community‐level effects and comparison with bioavailability‐normalized species sensitivity distributions</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Hommen, Udo ; Knopf, Burkhard ; Rüdel, Heinz ; Schäfers, Christoph ; De Schamphelaere, Karel ; Schlekat, Chris ; Garman, Emily Rogevich</creator><creatorcontrib>Hommen, Udo ; Knopf, Burkhard ; Rüdel, Heinz ; Schäfers, Christoph ; De Schamphelaere, Karel ; Schlekat, Chris ; Garman, Emily Rogevich</creatorcontrib><description>The aquatic risk assessment for nickel (Ni) in the European Union is based on chronic species sensitivity distributions and the use of bioavailability models. To test whether a bioavailability‐based safe threshold of Ni (the hazardous concentration for 5% of species [HC5]) is protective for aquatic communities, microcosms were exposed to 5 stable Ni treatments (6–96 μg/L) and a control for 4 mo to assess bioaccumulation and effects on phytoplankton, periphyton, zooplankton, and snails. Concentrations of Ni in the periphyton, macrophytes, and snails measured at the end of the exposure period increased in a dose‐dependent manner but did not indicate biomagnification. Abundance of phytoplankton and snails decreased in 48 μg Ni/L and 96 μg Ni/L treatments, which may have indirectly affected the abundance of zooplankton and periphyton. Exposure up to 24 μg Ni/L had no adverse effects on algae and zooplankton, whereas the rate of population decline of the snails at 24 μg Ni/L was significantly higher than in the controls. Therefore, the study‐specific overall no‐observed‐adverse‐effect concentration (NOAEC) is 12 μg Ni/L. This NOAEC is approximately twice the HC5 derived from a chronic species sensitivity distribution considering the specific water chemistry of the microcosm by means of bioavailability models. Thus, the present study provides support to the protectiveness of the bioavailability‐normalized HC5 for freshwater communities. Environ Toxicol Chem 2016;35:1172–1182. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.</description><identifier>ISSN: 0730-7268</identifier><identifier>EISSN: 1552-8618</identifier><identifier>DOI: 10.1002/etc.3255</identifier><identifier>PMID: 26387764</identifier><language>eng</language><publisher>United States: Pergamon</publisher><subject>Algae ; Animals ; Aquatic ecosystems ; Aquatic Organisms - metabolism ; Aquatic plants ; Bioaccumulation ; Bioavailability ; Biological Availability ; Biological magnification ; Biota ; Biotic ligand model ; Chronic exposure ; Community-level effect ; Fresh Water ; Higher tier test ; Magnoliopsida - metabolism ; Metal ; Mollusks ; Nickel ; Nickel - metabolism ; Phytoplankton ; Phytoplankton - metabolism ; Population decline ; Protected species ; Risk assessment ; Snails - metabolism ; Species Specificity ; Toxicity ; Toxicology ; Water chemistry ; Water Pollutants, Chemical - metabolism ; Water pollution ; Zooplankton ; Zooplankton - metabolism</subject><ispartof>Environmental toxicology and chemistry, 2016-05, Vol.35 (5), p.1172-1182</ispartof><rights>2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC.</rights><rights>2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.</rights><rights>2016 SETAC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5855-450fbed67950e1bebbf7315eb4a1961310a21743eb0b5c5a21659d7b5ce9222a3</citedby><cites>FETCH-LOGICAL-c5855-450fbed67950e1bebbf7315eb4a1961310a21743eb0b5c5a21659d7b5ce9222a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fetc.3255$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fetc.3255$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26387764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hommen, Udo</creatorcontrib><creatorcontrib>Knopf, Burkhard</creatorcontrib><creatorcontrib>Rüdel, Heinz</creatorcontrib><creatorcontrib>Schäfers, Christoph</creatorcontrib><creatorcontrib>De Schamphelaere, Karel</creatorcontrib><creatorcontrib>Schlekat, Chris</creatorcontrib><creatorcontrib>Garman, Emily Rogevich</creatorcontrib><title>microcosm study to support aquatic risk assessment of nickel: Community‐level effects and comparison with bioavailability‐normalized species sensitivity distributions</title><title>Environmental toxicology and chemistry</title><addtitle>Environ Toxicol Chem</addtitle><description>The aquatic risk assessment for nickel (Ni) in the European Union is based on chronic species sensitivity distributions and the use of bioavailability models. To test whether a bioavailability‐based safe threshold of Ni (the hazardous concentration for 5% of species [HC5]) is protective for aquatic communities, microcosms were exposed to 5 stable Ni treatments (6–96 μg/L) and a control for 4 mo to assess bioaccumulation and effects on phytoplankton, periphyton, zooplankton, and snails. Concentrations of Ni in the periphyton, macrophytes, and snails measured at the end of the exposure period increased in a dose‐dependent manner but did not indicate biomagnification. Abundance of phytoplankton and snails decreased in 48 μg Ni/L and 96 μg Ni/L treatments, which may have indirectly affected the abundance of zooplankton and periphyton. Exposure up to 24 μg Ni/L had no adverse effects on algae and zooplankton, whereas the rate of population decline of the snails at 24 μg Ni/L was significantly higher than in the controls. Therefore, the study‐specific overall no‐observed‐adverse‐effect concentration (NOAEC) is 12 μg Ni/L. This NOAEC is approximately twice the HC5 derived from a chronic species sensitivity distribution considering the specific water chemistry of the microcosm by means of bioavailability models. Thus, the present study provides support to the protectiveness of the bioavailability‐normalized HC5 for freshwater communities. Environ Toxicol Chem 2016;35:1172–1182. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.</description><subject>Algae</subject><subject>Animals</subject><subject>Aquatic ecosystems</subject><subject>Aquatic Organisms - metabolism</subject><subject>Aquatic plants</subject><subject>Bioaccumulation</subject><subject>Bioavailability</subject><subject>Biological Availability</subject><subject>Biological magnification</subject><subject>Biota</subject><subject>Biotic ligand model</subject><subject>Chronic exposure</subject><subject>Community-level effect</subject><subject>Fresh Water</subject><subject>Higher tier test</subject><subject>Magnoliopsida - metabolism</subject><subject>Metal</subject><subject>Mollusks</subject><subject>Nickel</subject><subject>Nickel - metabolism</subject><subject>Phytoplankton</subject><subject>Phytoplankton - metabolism</subject><subject>Population decline</subject><subject>Protected species</subject><subject>Risk assessment</subject><subject>Snails - metabolism</subject><subject>Species Specificity</subject><subject>Toxicity</subject><subject>Toxicology</subject><subject>Water chemistry</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Water pollution</subject><subject>Zooplankton</subject><subject>Zooplankton - metabolism</subject><issn>0730-7268</issn><issn>1552-8618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp10kFu1DAUBuAIgei0IHECsMSmmxTbieOEHYyYglRgARVLy3ZewJ0kTv2cKcOKI3AOjsVJ8GiGIiGxsi19_mW931n2iNEzRil_BtGeFVyIO9mCCcHzumL13WxBZUFzyav6KDtGvKKUVU3T3M-OeFXUUlblIvs5OBu89TgQjHO7JdETnKfJh0j09ayjsyQ4XBONCIgDjJH4jozOrqF_TpZ-GObRxe2v7z962EBPoOvARiR6bIn1w6TTbT-SGxe_EOO83mjXa-P6_Z3Rh0H37hu0BCewDpAgjOii2yRAWocxODNH50d8kN3rdI_w8LCeZJerVx-Xr_OL9-dvli8ucitqIfJS0M5AW8lGUGAGjOlkwQSYUrOmYgWjmjNZFmCoEVakQyWaVqY9NJxzXZxkp_vcKfjrGTCqwaGFvtcj-BkVk7VsJCtrmejTf-iVn8OYXrdTTJSCleXfwDRpxACdmoIbdNgqRtWuP5X6U7v-En18CJzNAO0t_FNYAvke3Lgetv8NUskcAg8-TRK-3nod1qqShRTq07tztVpyUdOXb9Uq-Sd732mv9OdUnrr8wNPHSZ-nlKIpi99KysMY</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Hommen, Udo</creator><creator>Knopf, Burkhard</creator><creator>Rüdel, Heinz</creator><creator>Schäfers, Christoph</creator><creator>De Schamphelaere, Karel</creator><creator>Schlekat, Chris</creator><creator>Garman, Emily Rogevich</creator><general>Pergamon</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>M7N</scope></search><sort><creationdate>201605</creationdate><title>microcosm study to support aquatic risk assessment of nickel: Community‐level effects and comparison with bioavailability‐normalized species sensitivity distributions</title><author>Hommen, Udo ; Knopf, Burkhard ; Rüdel, Heinz ; Schäfers, Christoph ; De Schamphelaere, Karel ; Schlekat, Chris ; Garman, Emily Rogevich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5855-450fbed67950e1bebbf7315eb4a1961310a21743eb0b5c5a21659d7b5ce9222a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algae</topic><topic>Animals</topic><topic>Aquatic ecosystems</topic><topic>Aquatic Organisms - metabolism</topic><topic>Aquatic plants</topic><topic>Bioaccumulation</topic><topic>Bioavailability</topic><topic>Biological Availability</topic><topic>Biological magnification</topic><topic>Biota</topic><topic>Biotic ligand model</topic><topic>Chronic exposure</topic><topic>Community-level effect</topic><topic>Fresh Water</topic><topic>Higher tier test</topic><topic>Magnoliopsida - metabolism</topic><topic>Metal</topic><topic>Mollusks</topic><topic>Nickel</topic><topic>Nickel - metabolism</topic><topic>Phytoplankton</topic><topic>Phytoplankton - metabolism</topic><topic>Population decline</topic><topic>Protected species</topic><topic>Risk assessment</topic><topic>Snails - metabolism</topic><topic>Species Specificity</topic><topic>Toxicity</topic><topic>Toxicology</topic><topic>Water chemistry</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Water pollution</topic><topic>Zooplankton</topic><topic>Zooplankton - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hommen, Udo</creatorcontrib><creatorcontrib>Knopf, Burkhard</creatorcontrib><creatorcontrib>Rüdel, Heinz</creatorcontrib><creatorcontrib>Schäfers, Christoph</creatorcontrib><creatorcontrib>De Schamphelaere, Karel</creatorcontrib><creatorcontrib>Schlekat, Chris</creatorcontrib><creatorcontrib>Garman, Emily Rogevich</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Environmental toxicology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hommen, Udo</au><au>Knopf, Burkhard</au><au>Rüdel, Heinz</au><au>Schäfers, Christoph</au><au>De Schamphelaere, Karel</au><au>Schlekat, Chris</au><au>Garman, Emily Rogevich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>microcosm study to support aquatic risk assessment of nickel: Community‐level effects and comparison with bioavailability‐normalized species sensitivity distributions</atitle><jtitle>Environmental toxicology and chemistry</jtitle><addtitle>Environ Toxicol Chem</addtitle><date>2016-05</date><risdate>2016</risdate><volume>35</volume><issue>5</issue><spage>1172</spage><epage>1182</epage><pages>1172-1182</pages><issn>0730-7268</issn><eissn>1552-8618</eissn><abstract>The aquatic risk assessment for nickel (Ni) in the European Union is based on chronic species sensitivity distributions and the use of bioavailability models. To test whether a bioavailability‐based safe threshold of Ni (the hazardous concentration for 5% of species [HC5]) is protective for aquatic communities, microcosms were exposed to 5 stable Ni treatments (6–96 μg/L) and a control for 4 mo to assess bioaccumulation and effects on phytoplankton, periphyton, zooplankton, and snails. Concentrations of Ni in the periphyton, macrophytes, and snails measured at the end of the exposure period increased in a dose‐dependent manner but did not indicate biomagnification. Abundance of phytoplankton and snails decreased in 48 μg Ni/L and 96 μg Ni/L treatments, which may have indirectly affected the abundance of zooplankton and periphyton. Exposure up to 24 μg Ni/L had no adverse effects on algae and zooplankton, whereas the rate of population decline of the snails at 24 μg Ni/L was significantly higher than in the controls. Therefore, the study‐specific overall no‐observed‐adverse‐effect concentration (NOAEC) is 12 μg Ni/L. This NOAEC is approximately twice the HC5 derived from a chronic species sensitivity distribution considering the specific water chemistry of the microcosm by means of bioavailability models. Thus, the present study provides support to the protectiveness of the bioavailability‐normalized HC5 for freshwater communities. Environ Toxicol Chem 2016;35:1172–1182. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.</abstract><cop>United States</cop><pub>Pergamon</pub><pmid>26387764</pmid><doi>10.1002/etc.3255</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-7268 |
ispartof | Environmental toxicology and chemistry, 2016-05, Vol.35 (5), p.1172-1182 |
issn | 0730-7268 1552-8618 |
language | eng |
recordid | cdi_proquest_miscellaneous_1787971487 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Algae Animals Aquatic ecosystems Aquatic Organisms - metabolism Aquatic plants Bioaccumulation Bioavailability Biological Availability Biological magnification Biota Biotic ligand model Chronic exposure Community-level effect Fresh Water Higher tier test Magnoliopsida - metabolism Metal Mollusks Nickel Nickel - metabolism Phytoplankton Phytoplankton - metabolism Population decline Protected species Risk assessment Snails - metabolism Species Specificity Toxicity Toxicology Water chemistry Water Pollutants, Chemical - metabolism Water pollution Zooplankton Zooplankton - metabolism |
title | microcosm study to support aquatic risk assessment of nickel: Community‐level effects and comparison with bioavailability‐normalized species sensitivity distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=microcosm%20study%20to%20support%20aquatic%20risk%20assessment%20of%20nickel:%20Community%E2%80%90level%20effects%20and%20comparison%20with%20bioavailability%E2%80%90normalized%20species%20sensitivity%20distributions&rft.jtitle=Environmental%20toxicology%20and%20chemistry&rft.au=Hommen,%20Udo&rft.date=2016-05&rft.volume=35&rft.issue=5&rft.spage=1172&rft.epage=1182&rft.pages=1172-1182&rft.issn=0730-7268&rft.eissn=1552-8618&rft_id=info:doi/10.1002/etc.3255&rft_dat=%3Cproquest_cross%3E4025807451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781545144&rft_id=info:pmid/26387764&rfr_iscdi=true |