microcosm study to support aquatic risk assessment of nickel: Community‐level effects and comparison with bioavailability‐normalized species sensitivity distributions

The aquatic risk assessment for nickel (Ni) in the European Union is based on chronic species sensitivity distributions and the use of bioavailability models. To test whether a bioavailability‐based safe threshold of Ni (the hazardous concentration for 5% of species [HC5]) is protective for aquatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental toxicology and chemistry 2016-05, Vol.35 (5), p.1172-1182
Hauptverfasser: Hommen, Udo, Knopf, Burkhard, Rüdel, Heinz, Schäfers, Christoph, De Schamphelaere, Karel, Schlekat, Chris, Garman, Emily Rogevich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1182
container_issue 5
container_start_page 1172
container_title Environmental toxicology and chemistry
container_volume 35
creator Hommen, Udo
Knopf, Burkhard
Rüdel, Heinz
Schäfers, Christoph
De Schamphelaere, Karel
Schlekat, Chris
Garman, Emily Rogevich
description The aquatic risk assessment for nickel (Ni) in the European Union is based on chronic species sensitivity distributions and the use of bioavailability models. To test whether a bioavailability‐based safe threshold of Ni (the hazardous concentration for 5% of species [HC5]) is protective for aquatic communities, microcosms were exposed to 5 stable Ni treatments (6–96 μg/L) and a control for 4 mo to assess bioaccumulation and effects on phytoplankton, periphyton, zooplankton, and snails. Concentrations of Ni in the periphyton, macrophytes, and snails measured at the end of the exposure period increased in a dose‐dependent manner but did not indicate biomagnification. Abundance of phytoplankton and snails decreased in 48 μg Ni/L and 96 μg Ni/L treatments, which may have indirectly affected the abundance of zooplankton and periphyton. Exposure up to 24 μg Ni/L had no adverse effects on algae and zooplankton, whereas the rate of population decline of the snails at 24 μg Ni/L was significantly higher than in the controls. Therefore, the study‐specific overall no‐observed‐adverse‐effect concentration (NOAEC) is 12 μg Ni/L. This NOAEC is approximately twice the HC5 derived from a chronic species sensitivity distribution considering the specific water chemistry of the microcosm by means of bioavailability models. Thus, the present study provides support to the protectiveness of the bioavailability‐normalized HC5 for freshwater communities. Environ Toxicol Chem 2016;35:1172–1182. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.
doi_str_mv 10.1002/etc.3255
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787971487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4025807451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5855-450fbed67950e1bebbf7315eb4a1961310a21743eb0b5c5a21659d7b5ce9222a3</originalsourceid><addsrcrecordid>eNp10kFu1DAUBuAIgei0IHECsMSmmxTbieOEHYyYglRgARVLy3ZewJ0kTv2cKcOKI3AOjsVJ8GiGIiGxsi19_mW931n2iNEzRil_BtGeFVyIO9mCCcHzumL13WxBZUFzyav6KDtGvKKUVU3T3M-OeFXUUlblIvs5OBu89TgQjHO7JdETnKfJh0j09ayjsyQ4XBONCIgDjJH4jozOrqF_TpZ-GObRxe2v7z962EBPoOvARiR6bIn1w6TTbT-SGxe_EOO83mjXa-P6_Z3Rh0H37hu0BCewDpAgjOii2yRAWocxODNH50d8kN3rdI_w8LCeZJerVx-Xr_OL9-dvli8ucitqIfJS0M5AW8lGUGAGjOlkwQSYUrOmYgWjmjNZFmCoEVakQyWaVqY9NJxzXZxkp_vcKfjrGTCqwaGFvtcj-BkVk7VsJCtrmejTf-iVn8OYXrdTTJSCleXfwDRpxACdmoIbdNgqRtWuP5X6U7v-En18CJzNAO0t_FNYAvke3Lgetv8NUskcAg8-TRK-3nod1qqShRTq07tztVpyUdOXb9Uq-Sd732mv9OdUnrr8wNPHSZ-nlKIpi99KysMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1781545144</pqid></control><display><type>article</type><title>microcosm study to support aquatic risk assessment of nickel: Community‐level effects and comparison with bioavailability‐normalized species sensitivity distributions</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Hommen, Udo ; Knopf, Burkhard ; Rüdel, Heinz ; Schäfers, Christoph ; De Schamphelaere, Karel ; Schlekat, Chris ; Garman, Emily Rogevich</creator><creatorcontrib>Hommen, Udo ; Knopf, Burkhard ; Rüdel, Heinz ; Schäfers, Christoph ; De Schamphelaere, Karel ; Schlekat, Chris ; Garman, Emily Rogevich</creatorcontrib><description>The aquatic risk assessment for nickel (Ni) in the European Union is based on chronic species sensitivity distributions and the use of bioavailability models. To test whether a bioavailability‐based safe threshold of Ni (the hazardous concentration for 5% of species [HC5]) is protective for aquatic communities, microcosms were exposed to 5 stable Ni treatments (6–96 μg/L) and a control for 4 mo to assess bioaccumulation and effects on phytoplankton, periphyton, zooplankton, and snails. Concentrations of Ni in the periphyton, macrophytes, and snails measured at the end of the exposure period increased in a dose‐dependent manner but did not indicate biomagnification. Abundance of phytoplankton and snails decreased in 48 μg Ni/L and 96 μg Ni/L treatments, which may have indirectly affected the abundance of zooplankton and periphyton. Exposure up to 24 μg Ni/L had no adverse effects on algae and zooplankton, whereas the rate of population decline of the snails at 24 μg Ni/L was significantly higher than in the controls. Therefore, the study‐specific overall no‐observed‐adverse‐effect concentration (NOAEC) is 12 μg Ni/L. This NOAEC is approximately twice the HC5 derived from a chronic species sensitivity distribution considering the specific water chemistry of the microcosm by means of bioavailability models. Thus, the present study provides support to the protectiveness of the bioavailability‐normalized HC5 for freshwater communities. Environ Toxicol Chem 2016;35:1172–1182. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.</description><identifier>ISSN: 0730-7268</identifier><identifier>EISSN: 1552-8618</identifier><identifier>DOI: 10.1002/etc.3255</identifier><identifier>PMID: 26387764</identifier><language>eng</language><publisher>United States: Pergamon</publisher><subject>Algae ; Animals ; Aquatic ecosystems ; Aquatic Organisms - metabolism ; Aquatic plants ; Bioaccumulation ; Bioavailability ; Biological Availability ; Biological magnification ; Biota ; Biotic ligand model ; Chronic exposure ; Community-level effect ; Fresh Water ; Higher tier test ; Magnoliopsida - metabolism ; Metal ; Mollusks ; Nickel ; Nickel - metabolism ; Phytoplankton ; Phytoplankton - metabolism ; Population decline ; Protected species ; Risk assessment ; Snails - metabolism ; Species Specificity ; Toxicity ; Toxicology ; Water chemistry ; Water Pollutants, Chemical - metabolism ; Water pollution ; Zooplankton ; Zooplankton - metabolism</subject><ispartof>Environmental toxicology and chemistry, 2016-05, Vol.35 (5), p.1172-1182</ispartof><rights>2015 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC.</rights><rights>2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.</rights><rights>2016 SETAC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5855-450fbed67950e1bebbf7315eb4a1961310a21743eb0b5c5a21659d7b5ce9222a3</citedby><cites>FETCH-LOGICAL-c5855-450fbed67950e1bebbf7315eb4a1961310a21743eb0b5c5a21659d7b5ce9222a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fetc.3255$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fetc.3255$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26387764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hommen, Udo</creatorcontrib><creatorcontrib>Knopf, Burkhard</creatorcontrib><creatorcontrib>Rüdel, Heinz</creatorcontrib><creatorcontrib>Schäfers, Christoph</creatorcontrib><creatorcontrib>De Schamphelaere, Karel</creatorcontrib><creatorcontrib>Schlekat, Chris</creatorcontrib><creatorcontrib>Garman, Emily Rogevich</creatorcontrib><title>microcosm study to support aquatic risk assessment of nickel: Community‐level effects and comparison with bioavailability‐normalized species sensitivity distributions</title><title>Environmental toxicology and chemistry</title><addtitle>Environ Toxicol Chem</addtitle><description>The aquatic risk assessment for nickel (Ni) in the European Union is based on chronic species sensitivity distributions and the use of bioavailability models. To test whether a bioavailability‐based safe threshold of Ni (the hazardous concentration for 5% of species [HC5]) is protective for aquatic communities, microcosms were exposed to 5 stable Ni treatments (6–96 μg/L) and a control for 4 mo to assess bioaccumulation and effects on phytoplankton, periphyton, zooplankton, and snails. Concentrations of Ni in the periphyton, macrophytes, and snails measured at the end of the exposure period increased in a dose‐dependent manner but did not indicate biomagnification. Abundance of phytoplankton and snails decreased in 48 μg Ni/L and 96 μg Ni/L treatments, which may have indirectly affected the abundance of zooplankton and periphyton. Exposure up to 24 μg Ni/L had no adverse effects on algae and zooplankton, whereas the rate of population decline of the snails at 24 μg Ni/L was significantly higher than in the controls. Therefore, the study‐specific overall no‐observed‐adverse‐effect concentration (NOAEC) is 12 μg Ni/L. This NOAEC is approximately twice the HC5 derived from a chronic species sensitivity distribution considering the specific water chemistry of the microcosm by means of bioavailability models. Thus, the present study provides support to the protectiveness of the bioavailability‐normalized HC5 for freshwater communities. Environ Toxicol Chem 2016;35:1172–1182. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.</description><subject>Algae</subject><subject>Animals</subject><subject>Aquatic ecosystems</subject><subject>Aquatic Organisms - metabolism</subject><subject>Aquatic plants</subject><subject>Bioaccumulation</subject><subject>Bioavailability</subject><subject>Biological Availability</subject><subject>Biological magnification</subject><subject>Biota</subject><subject>Biotic ligand model</subject><subject>Chronic exposure</subject><subject>Community-level effect</subject><subject>Fresh Water</subject><subject>Higher tier test</subject><subject>Magnoliopsida - metabolism</subject><subject>Metal</subject><subject>Mollusks</subject><subject>Nickel</subject><subject>Nickel - metabolism</subject><subject>Phytoplankton</subject><subject>Phytoplankton - metabolism</subject><subject>Population decline</subject><subject>Protected species</subject><subject>Risk assessment</subject><subject>Snails - metabolism</subject><subject>Species Specificity</subject><subject>Toxicity</subject><subject>Toxicology</subject><subject>Water chemistry</subject><subject>Water Pollutants, Chemical - metabolism</subject><subject>Water pollution</subject><subject>Zooplankton</subject><subject>Zooplankton - metabolism</subject><issn>0730-7268</issn><issn>1552-8618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp10kFu1DAUBuAIgei0IHECsMSmmxTbieOEHYyYglRgARVLy3ZewJ0kTv2cKcOKI3AOjsVJ8GiGIiGxsi19_mW931n2iNEzRil_BtGeFVyIO9mCCcHzumL13WxBZUFzyav6KDtGvKKUVU3T3M-OeFXUUlblIvs5OBu89TgQjHO7JdETnKfJh0j09ayjsyQ4XBONCIgDjJH4jozOrqF_TpZ-GObRxe2v7z962EBPoOvARiR6bIn1w6TTbT-SGxe_EOO83mjXa-P6_Z3Rh0H37hu0BCewDpAgjOii2yRAWocxODNH50d8kN3rdI_w8LCeZJerVx-Xr_OL9-dvli8ucitqIfJS0M5AW8lGUGAGjOlkwQSYUrOmYgWjmjNZFmCoEVakQyWaVqY9NJxzXZxkp_vcKfjrGTCqwaGFvtcj-BkVk7VsJCtrmejTf-iVn8OYXrdTTJSCleXfwDRpxACdmoIbdNgqRtWuP5X6U7v-En18CJzNAO0t_FNYAvke3Lgetv8NUskcAg8-TRK-3nod1qqShRTq07tztVpyUdOXb9Uq-Sd732mv9OdUnrr8wNPHSZ-nlKIpi99KysMY</recordid><startdate>201605</startdate><enddate>201605</enddate><creator>Hommen, Udo</creator><creator>Knopf, Burkhard</creator><creator>Rüdel, Heinz</creator><creator>Schäfers, Christoph</creator><creator>De Schamphelaere, Karel</creator><creator>Schlekat, Chris</creator><creator>Garman, Emily Rogevich</creator><general>Pergamon</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>M7N</scope></search><sort><creationdate>201605</creationdate><title>microcosm study to support aquatic risk assessment of nickel: Community‐level effects and comparison with bioavailability‐normalized species sensitivity distributions</title><author>Hommen, Udo ; Knopf, Burkhard ; Rüdel, Heinz ; Schäfers, Christoph ; De Schamphelaere, Karel ; Schlekat, Chris ; Garman, Emily Rogevich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5855-450fbed67950e1bebbf7315eb4a1961310a21743eb0b5c5a21659d7b5ce9222a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algae</topic><topic>Animals</topic><topic>Aquatic ecosystems</topic><topic>Aquatic Organisms - metabolism</topic><topic>Aquatic plants</topic><topic>Bioaccumulation</topic><topic>Bioavailability</topic><topic>Biological Availability</topic><topic>Biological magnification</topic><topic>Biota</topic><topic>Biotic ligand model</topic><topic>Chronic exposure</topic><topic>Community-level effect</topic><topic>Fresh Water</topic><topic>Higher tier test</topic><topic>Magnoliopsida - metabolism</topic><topic>Metal</topic><topic>Mollusks</topic><topic>Nickel</topic><topic>Nickel - metabolism</topic><topic>Phytoplankton</topic><topic>Phytoplankton - metabolism</topic><topic>Population decline</topic><topic>Protected species</topic><topic>Risk assessment</topic><topic>Snails - metabolism</topic><topic>Species Specificity</topic><topic>Toxicity</topic><topic>Toxicology</topic><topic>Water chemistry</topic><topic>Water Pollutants, Chemical - metabolism</topic><topic>Water pollution</topic><topic>Zooplankton</topic><topic>Zooplankton - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hommen, Udo</creatorcontrib><creatorcontrib>Knopf, Burkhard</creatorcontrib><creatorcontrib>Rüdel, Heinz</creatorcontrib><creatorcontrib>Schäfers, Christoph</creatorcontrib><creatorcontrib>De Schamphelaere, Karel</creatorcontrib><creatorcontrib>Schlekat, Chris</creatorcontrib><creatorcontrib>Garman, Emily Rogevich</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Environmental toxicology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hommen, Udo</au><au>Knopf, Burkhard</au><au>Rüdel, Heinz</au><au>Schäfers, Christoph</au><au>De Schamphelaere, Karel</au><au>Schlekat, Chris</au><au>Garman, Emily Rogevich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>microcosm study to support aquatic risk assessment of nickel: Community‐level effects and comparison with bioavailability‐normalized species sensitivity distributions</atitle><jtitle>Environmental toxicology and chemistry</jtitle><addtitle>Environ Toxicol Chem</addtitle><date>2016-05</date><risdate>2016</risdate><volume>35</volume><issue>5</issue><spage>1172</spage><epage>1182</epage><pages>1172-1182</pages><issn>0730-7268</issn><eissn>1552-8618</eissn><abstract>The aquatic risk assessment for nickel (Ni) in the European Union is based on chronic species sensitivity distributions and the use of bioavailability models. To test whether a bioavailability‐based safe threshold of Ni (the hazardous concentration for 5% of species [HC5]) is protective for aquatic communities, microcosms were exposed to 5 stable Ni treatments (6–96 μg/L) and a control for 4 mo to assess bioaccumulation and effects on phytoplankton, periphyton, zooplankton, and snails. Concentrations of Ni in the periphyton, macrophytes, and snails measured at the end of the exposure period increased in a dose‐dependent manner but did not indicate biomagnification. Abundance of phytoplankton and snails decreased in 48 μg Ni/L and 96 μg Ni/L treatments, which may have indirectly affected the abundance of zooplankton and periphyton. Exposure up to 24 μg Ni/L had no adverse effects on algae and zooplankton, whereas the rate of population decline of the snails at 24 μg Ni/L was significantly higher than in the controls. Therefore, the study‐specific overall no‐observed‐adverse‐effect concentration (NOAEC) is 12 μg Ni/L. This NOAEC is approximately twice the HC5 derived from a chronic species sensitivity distribution considering the specific water chemistry of the microcosm by means of bioavailability models. Thus, the present study provides support to the protectiveness of the bioavailability‐normalized HC5 for freshwater communities. Environ Toxicol Chem 2016;35:1172–1182. © 2015 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.</abstract><cop>United States</cop><pub>Pergamon</pub><pmid>26387764</pmid><doi>10.1002/etc.3255</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-7268
ispartof Environmental toxicology and chemistry, 2016-05, Vol.35 (5), p.1172-1182
issn 0730-7268
1552-8618
language eng
recordid cdi_proquest_miscellaneous_1787971487
source MEDLINE; Wiley Online Library All Journals
subjects Algae
Animals
Aquatic ecosystems
Aquatic Organisms - metabolism
Aquatic plants
Bioaccumulation
Bioavailability
Biological Availability
Biological magnification
Biota
Biotic ligand model
Chronic exposure
Community-level effect
Fresh Water
Higher tier test
Magnoliopsida - metabolism
Metal
Mollusks
Nickel
Nickel - metabolism
Phytoplankton
Phytoplankton - metabolism
Population decline
Protected species
Risk assessment
Snails - metabolism
Species Specificity
Toxicity
Toxicology
Water chemistry
Water Pollutants, Chemical - metabolism
Water pollution
Zooplankton
Zooplankton - metabolism
title microcosm study to support aquatic risk assessment of nickel: Community‐level effects and comparison with bioavailability‐normalized species sensitivity distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=microcosm%20study%20to%20support%20aquatic%20risk%20assessment%20of%20nickel:%20Community%E2%80%90level%20effects%20and%20comparison%20with%20bioavailability%E2%80%90normalized%20species%20sensitivity%20distributions&rft.jtitle=Environmental%20toxicology%20and%20chemistry&rft.au=Hommen,%20Udo&rft.date=2016-05&rft.volume=35&rft.issue=5&rft.spage=1172&rft.epage=1182&rft.pages=1172-1182&rft.issn=0730-7268&rft.eissn=1552-8618&rft_id=info:doi/10.1002/etc.3255&rft_dat=%3Cproquest_cross%3E4025807451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1781545144&rft_id=info:pmid/26387764&rfr_iscdi=true