Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal–Organic Frameworks (MOFs) at Low Pressure

Metal–organic frameworks (MOFs) are nanoporous materials with exceptional host–guest properties poised for groundbreaking innovations in gas separation applications according to high-throughput (HT) screening data. However, MOF structural libraries are nearly infinite in practice and so statistical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS combinatorial science 2016-05, Vol.18 (5), p.243-252
Hauptverfasser: Fernandez, Michael, Barnard, Amanda S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue 5
container_start_page 243
container_title ACS combinatorial science
container_volume 18
creator Fernandez, Michael
Barnard, Amanda S
description Metal–organic frameworks (MOFs) are nanoporous materials with exceptional host–guest properties poised for groundbreaking innovations in gas separation applications according to high-throughput (HT) screening data. However, MOF structural libraries are nearly infinite in practice and so statistical and information technology will play a fundamental role in implementing and rationalizing MOF virtual screening. In this work, we apply k-means clustering and archetypal analysis (AA) to identify the truly significant nanoporous structures in a large library of ∼82 000 virtual MOFs. Quantitative structure–property relationship (QSPR) models of the theoretical CO2 and N2 uptake capacities were also developed using a calibration set of ∼16 000 hypothetical MOF structures derived from the prototypes and archetype frameworks. Since uptake capacities correlated poorly to the void fraction, surface area and pore size but these properties were used to build binary classifier predictors that successfully identify “high-performing” nanoporous materials in an external test set of ∼65 000 MOFs with accuracy higher than 94%. The accuracy of the classification decreased for MOFs with fluorine substituents. The classification models can serve as efficient filtering tools to detecting promising high-performing candidates at the early stage of virtual high-throughput screening of novel porous materials.
doi_str_mv 10.1021/acscombsci.5b00188
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787935496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1787935496</sourcerecordid><originalsourceid>FETCH-LOGICAL-a250t-1166563f6c103ad1e2f16fd6b633eb9cf05fda7a0ec734a8643361c578bd33733</originalsourceid><addsrcrecordid>eNpFkc9OwkAQxjdGIwR5AQ9mj3gA90-7bY-ECJqAeNDzZrqdmmLbxd02hJvv4Bv6JJaAOpeZyfzyZfJ9hFxzNuFM8Dsw3tgq9aaYhCljPI7PSF_wUI3jJAjO_-ZQ9MjQ-w3rKggSodgl6YmICREp1if7BdoKG1cYKOmzs1t0TYGezqDuVswK09DZWlCoM_ok6DTz1m2bwnZXdLl1FdQGqc3pChsovz-_1u4N6sLQuYMKd9a9ezparef-lkJDl3Z3UPW-dXhFLnIoPQ5PfUBe5_cvs4fxcr14nE2XYxAha8acKxUqmSvDmYSMo8i5yjOVKikxTUzOwjyDCBiaSAYQq0BKxU0YxWkmZSTlgIyOultnP1r0ja4Kb7AsoUbbes2jOEpkGCSqQ29OaJtWmOmtKypwe_1rVwdMjkDnvt7Y1tXd55ozfYhE_0eiT5HIH0TMfyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787935496</pqid></control><display><type>article</type><title>Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal–Organic Frameworks (MOFs) at Low Pressure</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Fernandez, Michael ; Barnard, Amanda S</creator><creatorcontrib>Fernandez, Michael ; Barnard, Amanda S</creatorcontrib><description>Metal–organic frameworks (MOFs) are nanoporous materials with exceptional host–guest properties poised for groundbreaking innovations in gas separation applications according to high-throughput (HT) screening data. However, MOF structural libraries are nearly infinite in practice and so statistical and information technology will play a fundamental role in implementing and rationalizing MOF virtual screening. In this work, we apply k-means clustering and archetypal analysis (AA) to identify the truly significant nanoporous structures in a large library of ∼82 000 virtual MOFs. Quantitative structure–property relationship (QSPR) models of the theoretical CO2 and N2 uptake capacities were also developed using a calibration set of ∼16 000 hypothetical MOF structures derived from the prototypes and archetype frameworks. Since uptake capacities correlated poorly to the void fraction, surface area and pore size but these properties were used to build binary classifier predictors that successfully identify “high-performing” nanoporous materials in an external test set of ∼65 000 MOFs with accuracy higher than 94%. The accuracy of the classification decreased for MOFs with fluorine substituents. The classification models can serve as efficient filtering tools to detecting promising high-performing candidates at the early stage of virtual high-throughput screening of novel porous materials.</description><identifier>ISSN: 2156-8952</identifier><identifier>EISSN: 2156-8944</identifier><identifier>DOI: 10.1021/acscombsci.5b00188</identifier><identifier>PMID: 27022760</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Carbon Dioxide - chemistry ; Carbon Dioxide - isolation &amp; purification ; Filtration ; Nitrogen - chemistry ; Nitrogen - isolation &amp; purification ; Organometallic Compounds - chemistry ; Porosity ; Pressure ; Small Molecule Libraries - chemistry</subject><ispartof>ACS combinatorial science, 2016-05, Vol.18 (5), p.243-252</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscombsci.5b00188$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscombsci.5b00188$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27022760$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandez, Michael</creatorcontrib><creatorcontrib>Barnard, Amanda S</creatorcontrib><title>Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal–Organic Frameworks (MOFs) at Low Pressure</title><title>ACS combinatorial science</title><addtitle>ACS Comb. Sci</addtitle><description>Metal–organic frameworks (MOFs) are nanoporous materials with exceptional host–guest properties poised for groundbreaking innovations in gas separation applications according to high-throughput (HT) screening data. However, MOF structural libraries are nearly infinite in practice and so statistical and information technology will play a fundamental role in implementing and rationalizing MOF virtual screening. In this work, we apply k-means clustering and archetypal analysis (AA) to identify the truly significant nanoporous structures in a large library of ∼82 000 virtual MOFs. Quantitative structure–property relationship (QSPR) models of the theoretical CO2 and N2 uptake capacities were also developed using a calibration set of ∼16 000 hypothetical MOF structures derived from the prototypes and archetype frameworks. Since uptake capacities correlated poorly to the void fraction, surface area and pore size but these properties were used to build binary classifier predictors that successfully identify “high-performing” nanoporous materials in an external test set of ∼65 000 MOFs with accuracy higher than 94%. The accuracy of the classification decreased for MOFs with fluorine substituents. The classification models can serve as efficient filtering tools to detecting promising high-performing candidates at the early stage of virtual high-throughput screening of novel porous materials.</description><subject>Adsorption</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbon Dioxide - isolation &amp; purification</subject><subject>Filtration</subject><subject>Nitrogen - chemistry</subject><subject>Nitrogen - isolation &amp; purification</subject><subject>Organometallic Compounds - chemistry</subject><subject>Porosity</subject><subject>Pressure</subject><subject>Small Molecule Libraries - chemistry</subject><issn>2156-8952</issn><issn>2156-8944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkc9OwkAQxjdGIwR5AQ9mj3gA90-7bY-ECJqAeNDzZrqdmmLbxd02hJvv4Bv6JJaAOpeZyfzyZfJ9hFxzNuFM8Dsw3tgq9aaYhCljPI7PSF_wUI3jJAjO_-ZQ9MjQ-w3rKggSodgl6YmICREp1if7BdoKG1cYKOmzs1t0TYGezqDuVswK09DZWlCoM_ok6DTz1m2bwnZXdLl1FdQGqc3pChsovz-_1u4N6sLQuYMKd9a9ezparef-lkJDl3Z3UPW-dXhFLnIoPQ5PfUBe5_cvs4fxcr14nE2XYxAha8acKxUqmSvDmYSMo8i5yjOVKikxTUzOwjyDCBiaSAYQq0BKxU0YxWkmZSTlgIyOultnP1r0ja4Kb7AsoUbbes2jOEpkGCSqQ29OaJtWmOmtKypwe_1rVwdMjkDnvt7Y1tXd55ozfYhE_0eiT5HIH0TMfyo</recordid><startdate>20160509</startdate><enddate>20160509</enddate><creator>Fernandez, Michael</creator><creator>Barnard, Amanda S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160509</creationdate><title>Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal–Organic Frameworks (MOFs) at Low Pressure</title><author>Fernandez, Michael ; Barnard, Amanda S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a250t-1166563f6c103ad1e2f16fd6b633eb9cf05fda7a0ec734a8643361c578bd33733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adsorption</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbon Dioxide - isolation &amp; purification</topic><topic>Filtration</topic><topic>Nitrogen - chemistry</topic><topic>Nitrogen - isolation &amp; purification</topic><topic>Organometallic Compounds - chemistry</topic><topic>Porosity</topic><topic>Pressure</topic><topic>Small Molecule Libraries - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez, Michael</creatorcontrib><creatorcontrib>Barnard, Amanda S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS combinatorial science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez, Michael</au><au>Barnard, Amanda S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal–Organic Frameworks (MOFs) at Low Pressure</atitle><jtitle>ACS combinatorial science</jtitle><addtitle>ACS Comb. Sci</addtitle><date>2016-05-09</date><risdate>2016</risdate><volume>18</volume><issue>5</issue><spage>243</spage><epage>252</epage><pages>243-252</pages><issn>2156-8952</issn><eissn>2156-8944</eissn><abstract>Metal–organic frameworks (MOFs) are nanoporous materials with exceptional host–guest properties poised for groundbreaking innovations in gas separation applications according to high-throughput (HT) screening data. However, MOF structural libraries are nearly infinite in practice and so statistical and information technology will play a fundamental role in implementing and rationalizing MOF virtual screening. In this work, we apply k-means clustering and archetypal analysis (AA) to identify the truly significant nanoporous structures in a large library of ∼82 000 virtual MOFs. Quantitative structure–property relationship (QSPR) models of the theoretical CO2 and N2 uptake capacities were also developed using a calibration set of ∼16 000 hypothetical MOF structures derived from the prototypes and archetype frameworks. Since uptake capacities correlated poorly to the void fraction, surface area and pore size but these properties were used to build binary classifier predictors that successfully identify “high-performing” nanoporous materials in an external test set of ∼65 000 MOFs with accuracy higher than 94%. The accuracy of the classification decreased for MOFs with fluorine substituents. The classification models can serve as efficient filtering tools to detecting promising high-performing candidates at the early stage of virtual high-throughput screening of novel porous materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27022760</pmid><doi>10.1021/acscombsci.5b00188</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2156-8952
ispartof ACS combinatorial science, 2016-05, Vol.18 (5), p.243-252
issn 2156-8952
2156-8944
language eng
recordid cdi_proquest_miscellaneous_1787935496
source MEDLINE; American Chemical Society Journals
subjects Adsorption
Carbon Dioxide - chemistry
Carbon Dioxide - isolation & purification
Filtration
Nitrogen - chemistry
Nitrogen - isolation & purification
Organometallic Compounds - chemistry
Porosity
Pressure
Small Molecule Libraries - chemistry
title Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal–Organic Frameworks (MOFs) at Low Pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20Properties%20Can%20Predict%20CO2%20and%20N2%20Adsorption%20Performance%20of%20Metal%E2%80%93Organic%20Frameworks%20(MOFs)%20at%20Low%20Pressure&rft.jtitle=ACS%20combinatorial%20science&rft.au=Fernandez,%20Michael&rft.date=2016-05-09&rft.volume=18&rft.issue=5&rft.spage=243&rft.epage=252&rft.pages=243-252&rft.issn=2156-8952&rft.eissn=2156-8944&rft_id=info:doi/10.1021/acscombsci.5b00188&rft_dat=%3Cproquest_pubme%3E1787935496%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787935496&rft_id=info:pmid/27022760&rfr_iscdi=true