QUANTUM CONNECTIONS
Scientists struggle to build quantum computers big enough to be useful because large collections of particles typically stop behaving quantum mechanically and start obeying classical laws. The solution, researchers are realizing, is to construct many small quantum computers and link them together th...
Gespeichert in:
Veröffentlicht in: | Scientific American 2016-05, Vol.314 (5), p.50-57 |
---|---|
Hauptverfasser: | , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 5 |
container_start_page | 50 |
container_title | Scientific American |
container_volume | 314 |
creator | Monroe, Christopher R. Schoelkopf, Robert J. Lukin, Mikhail D. |
description | Scientists struggle to build quantum computers big enough to be useful because large collections of particles typically stop behaving quantum mechanically and start obeying classical laws. The solution, researchers are realizing, is to construct many small quantum computers and link them together through minimal connections that do not disturb their quantum properties--an approach called modular quantum computing. Several modular methods relying on different types of quantum bits, or qubits, have recently proved successful in small tests and could soon be scaled up into larger systems. Here, Monroe et al discuss how scientists are trying to make quantum computers a reality by connecting many small networks together into one large whole. |
doi_str_mv | 10.1038/scientificamerican0516-50 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787933678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26046953</jstor_id><sourcerecordid>26046953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-ab5e131b5030284f145a5e45da26ccc69f551091e5e053a2591fbf9121d0f88c3</originalsourceid><addsrcrecordid>eNqNkD1Pw0AMhk8IREthYgbBxhKw7-L7GKuoQKWSCtHO0eV6J6VqmpJrB_49QS2wMODBtuTHr-WXsVuEewShH6Kr_HpbhcrZ2rddXgOhTAiOWB9NKhMFWh2zPoCQiVZC9NhZjEvogks4ZT2usGuJ-uzydT7MZ_OXm2ya56NsNp7mb-fsJNhV9BeHOmDzx9Ese04m06dxNpwkTii-TWxJHgWWBAK4TgOmZMmntLBcOuekCUQIBj15IGE5GQxlMMhxAUFrJwbsbq-7aZv3nY_boq6i86uVXftmFwtUWhkhpNL_QYUBbYh3qNmjrm1ibH0oNm1V2_ajQCi-7Cv-tq_o_hiw68OZXVn7xc_mt18dcLUHlnHbtL9zCak0JMQnBBB2Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>1783908952</pqid></control><display><type>magazinearticle</type><title>QUANTUM CONNECTIONS</title><source>Business Source Complete</source><source>Jstor Complete Legacy</source><creator>Monroe, Christopher R. ; Schoelkopf, Robert J. ; Lukin, Mikhail D.</creator><creatorcontrib>Monroe, Christopher R. ; Schoelkopf, Robert J. ; Lukin, Mikhail D.</creatorcontrib><description>Scientists struggle to build quantum computers big enough to be useful because large collections of particles typically stop behaving quantum mechanically and start obeying classical laws. The solution, researchers are realizing, is to construct many small quantum computers and link them together through minimal connections that do not disturb their quantum properties--an approach called modular quantum computing. Several modular methods relying on different types of quantum bits, or qubits, have recently proved successful in small tests and could soon be scaled up into larger systems. Here, Monroe et al discuss how scientists are trying to make quantum computers a reality by connecting many small networks together into one large whole.</description><identifier>ISSN: 0036-8733</identifier><identifier>EISSN: 1946-7087</identifier><identifier>DOI: 10.1038/scientificamerican0516-50</identifier><identifier>PMID: 27100255</identifier><identifier>CODEN: SCAMAC</identifier><language>eng</language><publisher>United States: Scientific American, Incorporated</publisher><subject>Computer engineering ; Quantum computing ; Quantum theory ; Supercomputers ; Superconductors ; Supermicrocomputers</subject><ispartof>Scientific American, 2016-05, Vol.314 (5), p.50-57</ispartof><rights>Copyright Scientific American, Incorporated May 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-ab5e131b5030284f145a5e45da26ccc69f551091e5e053a2591fbf9121d0f88c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26046953$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26046953$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>777,781,800,27907,57999,58232</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27100255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monroe, Christopher R.</creatorcontrib><creatorcontrib>Schoelkopf, Robert J.</creatorcontrib><creatorcontrib>Lukin, Mikhail D.</creatorcontrib><title>QUANTUM CONNECTIONS</title><title>Scientific American</title><addtitle>Sci Am</addtitle><description>Scientists struggle to build quantum computers big enough to be useful because large collections of particles typically stop behaving quantum mechanically and start obeying classical laws. The solution, researchers are realizing, is to construct many small quantum computers and link them together through minimal connections that do not disturb their quantum properties--an approach called modular quantum computing. Several modular methods relying on different types of quantum bits, or qubits, have recently proved successful in small tests and could soon be scaled up into larger systems. Here, Monroe et al discuss how scientists are trying to make quantum computers a reality by connecting many small networks together into one large whole.</description><subject>Computer engineering</subject><subject>Quantum computing</subject><subject>Quantum theory</subject><subject>Supercomputers</subject><subject>Superconductors</subject><subject>Supermicrocomputers</subject><issn>0036-8733</issn><issn>1946-7087</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2016</creationdate><recordtype>magazinearticle</recordtype><recordid>eNqNkD1Pw0AMhk8IREthYgbBxhKw7-L7GKuoQKWSCtHO0eV6J6VqmpJrB_49QS2wMODBtuTHr-WXsVuEewShH6Kr_HpbhcrZ2rddXgOhTAiOWB9NKhMFWh2zPoCQiVZC9NhZjEvogks4ZT2usGuJ-uzydT7MZ_OXm2ya56NsNp7mb-fsJNhV9BeHOmDzx9Ese04m06dxNpwkTii-TWxJHgWWBAK4TgOmZMmntLBcOuekCUQIBj15IGE5GQxlMMhxAUFrJwbsbq-7aZv3nY_boq6i86uVXftmFwtUWhkhpNL_QYUBbYh3qNmjrm1ibH0oNm1V2_ajQCi-7Cv-tq_o_hiw68OZXVn7xc_mt18dcLUHlnHbtL9zCak0JMQnBBB2Xw</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Monroe, Christopher R.</creator><creator>Schoelkopf, Robert J.</creator><creator>Lukin, Mikhail D.</creator><general>Scientific American, Incorporated</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>NAPCQ</scope></search><sort><creationdate>20160501</creationdate><title>QUANTUM CONNECTIONS</title><author>Monroe, Christopher R. ; Schoelkopf, Robert J. ; Lukin, Mikhail D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-ab5e131b5030284f145a5e45da26ccc69f551091e5e053a2591fbf9121d0f88c3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer engineering</topic><topic>Quantum computing</topic><topic>Quantum theory</topic><topic>Supercomputers</topic><topic>Superconductors</topic><topic>Supermicrocomputers</topic><toplevel>online_resources</toplevel><creatorcontrib>Monroe, Christopher R.</creatorcontrib><creatorcontrib>Schoelkopf, Robert J.</creatorcontrib><creatorcontrib>Lukin, Mikhail D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nursing & Allied Health Premium</collection><jtitle>Scientific American</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monroe, Christopher R.</au><au>Schoelkopf, Robert J.</au><au>Lukin, Mikhail D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QUANTUM CONNECTIONS</atitle><jtitle>Scientific American</jtitle><addtitle>Sci Am</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>314</volume><issue>5</issue><spage>50</spage><epage>57</epage><pages>50-57</pages><issn>0036-8733</issn><eissn>1946-7087</eissn><coden>SCAMAC</coden><abstract>Scientists struggle to build quantum computers big enough to be useful because large collections of particles typically stop behaving quantum mechanically and start obeying classical laws. The solution, researchers are realizing, is to construct many small quantum computers and link them together through minimal connections that do not disturb their quantum properties--an approach called modular quantum computing. Several modular methods relying on different types of quantum bits, or qubits, have recently proved successful in small tests and could soon be scaled up into larger systems. Here, Monroe et al discuss how scientists are trying to make quantum computers a reality by connecting many small networks together into one large whole.</abstract><cop>United States</cop><pub>Scientific American, Incorporated</pub><pmid>27100255</pmid><doi>10.1038/scientificamerican0516-50</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8733 |
ispartof | Scientific American, 2016-05, Vol.314 (5), p.50-57 |
issn | 0036-8733 1946-7087 |
language | eng |
recordid | cdi_proquest_miscellaneous_1787933678 |
source | Business Source Complete; Jstor Complete Legacy |
subjects | Computer engineering Quantum computing Quantum theory Supercomputers Superconductors Supermicrocomputers |
title | QUANTUM CONNECTIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QUANTUM%20CONNECTIONS&rft.jtitle=Scientific%20American&rft.au=Monroe,%20Christopher%20R.&rft.date=2016-05-01&rft.volume=314&rft.issue=5&rft.spage=50&rft.epage=57&rft.pages=50-57&rft.issn=0036-8733&rft.eissn=1946-7087&rft.coden=SCAMAC&rft_id=info:doi/10.1038/scientificamerican0516-50&rft_dat=%3Cjstor_proqu%3E26046953%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1783908952&rft_id=info:pmid/27100255&rft_jstor_id=26046953&rfr_iscdi=true |