QUANTUM CONNECTIONS

Scientists struggle to build quantum computers big enough to be useful because large collections of particles typically stop behaving quantum mechanically and start obeying classical laws. The solution, researchers are realizing, is to construct many small quantum computers and link them together th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific American 2016-05, Vol.314 (5), p.50-57
Hauptverfasser: Monroe, Christopher R., Schoelkopf, Robert J., Lukin, Mikhail D.
Format: Magazinearticle
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 5
container_start_page 50
container_title Scientific American
container_volume 314
creator Monroe, Christopher R.
Schoelkopf, Robert J.
Lukin, Mikhail D.
description Scientists struggle to build quantum computers big enough to be useful because large collections of particles typically stop behaving quantum mechanically and start obeying classical laws. The solution, researchers are realizing, is to construct many small quantum computers and link them together through minimal connections that do not disturb their quantum properties--an approach called modular quantum computing. Several modular methods relying on different types of quantum bits, or qubits, have recently proved successful in small tests and could soon be scaled up into larger systems. Here, Monroe et al discuss how scientists are trying to make quantum computers a reality by connecting many small networks together into one large whole.
doi_str_mv 10.1038/scientificamerican0516-50
format Magazinearticle
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787933678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26046953</jstor_id><sourcerecordid>26046953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-ab5e131b5030284f145a5e45da26ccc69f551091e5e053a2591fbf9121d0f88c3</originalsourceid><addsrcrecordid>eNqNkD1Pw0AMhk8IREthYgbBxhKw7-L7GKuoQKWSCtHO0eV6J6VqmpJrB_49QS2wMODBtuTHr-WXsVuEewShH6Kr_HpbhcrZ2rddXgOhTAiOWB9NKhMFWh2zPoCQiVZC9NhZjEvogks4ZT2usGuJ-uzydT7MZ_OXm2ya56NsNp7mb-fsJNhV9BeHOmDzx9Ese04m06dxNpwkTii-TWxJHgWWBAK4TgOmZMmntLBcOuekCUQIBj15IGE5GQxlMMhxAUFrJwbsbq-7aZv3nY_boq6i86uVXftmFwtUWhkhpNL_QYUBbYh3qNmjrm1ibH0oNm1V2_ajQCi-7Cv-tq_o_hiw68OZXVn7xc_mt18dcLUHlnHbtL9zCak0JMQnBBB2Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>1783908952</pqid></control><display><type>magazinearticle</type><title>QUANTUM CONNECTIONS</title><source>Business Source Complete</source><source>Jstor Complete Legacy</source><creator>Monroe, Christopher R. ; Schoelkopf, Robert J. ; Lukin, Mikhail D.</creator><creatorcontrib>Monroe, Christopher R. ; Schoelkopf, Robert J. ; Lukin, Mikhail D.</creatorcontrib><description>Scientists struggle to build quantum computers big enough to be useful because large collections of particles typically stop behaving quantum mechanically and start obeying classical laws. The solution, researchers are realizing, is to construct many small quantum computers and link them together through minimal connections that do not disturb their quantum properties--an approach called modular quantum computing. Several modular methods relying on different types of quantum bits, or qubits, have recently proved successful in small tests and could soon be scaled up into larger systems. Here, Monroe et al discuss how scientists are trying to make quantum computers a reality by connecting many small networks together into one large whole.</description><identifier>ISSN: 0036-8733</identifier><identifier>EISSN: 1946-7087</identifier><identifier>DOI: 10.1038/scientificamerican0516-50</identifier><identifier>PMID: 27100255</identifier><identifier>CODEN: SCAMAC</identifier><language>eng</language><publisher>United States: Scientific American, Incorporated</publisher><subject>Computer engineering ; Quantum computing ; Quantum theory ; Supercomputers ; Superconductors ; Supermicrocomputers</subject><ispartof>Scientific American, 2016-05, Vol.314 (5), p.50-57</ispartof><rights>Copyright Scientific American, Incorporated May 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-ab5e131b5030284f145a5e45da26ccc69f551091e5e053a2591fbf9121d0f88c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26046953$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26046953$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>777,781,800,27907,57999,58232</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27100255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monroe, Christopher R.</creatorcontrib><creatorcontrib>Schoelkopf, Robert J.</creatorcontrib><creatorcontrib>Lukin, Mikhail D.</creatorcontrib><title>QUANTUM CONNECTIONS</title><title>Scientific American</title><addtitle>Sci Am</addtitle><description>Scientists struggle to build quantum computers big enough to be useful because large collections of particles typically stop behaving quantum mechanically and start obeying classical laws. The solution, researchers are realizing, is to construct many small quantum computers and link them together through minimal connections that do not disturb their quantum properties--an approach called modular quantum computing. Several modular methods relying on different types of quantum bits, or qubits, have recently proved successful in small tests and could soon be scaled up into larger systems. Here, Monroe et al discuss how scientists are trying to make quantum computers a reality by connecting many small networks together into one large whole.</description><subject>Computer engineering</subject><subject>Quantum computing</subject><subject>Quantum theory</subject><subject>Supercomputers</subject><subject>Superconductors</subject><subject>Supermicrocomputers</subject><issn>0036-8733</issn><issn>1946-7087</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2016</creationdate><recordtype>magazinearticle</recordtype><recordid>eNqNkD1Pw0AMhk8IREthYgbBxhKw7-L7GKuoQKWSCtHO0eV6J6VqmpJrB_49QS2wMODBtuTHr-WXsVuEewShH6Kr_HpbhcrZ2rddXgOhTAiOWB9NKhMFWh2zPoCQiVZC9NhZjEvogks4ZT2usGuJ-uzydT7MZ_OXm2ya56NsNp7mb-fsJNhV9BeHOmDzx9Ese04m06dxNpwkTii-TWxJHgWWBAK4TgOmZMmntLBcOuekCUQIBj15IGE5GQxlMMhxAUFrJwbsbq-7aZv3nY_boq6i86uVXftmFwtUWhkhpNL_QYUBbYh3qNmjrm1ibH0oNm1V2_ajQCi-7Cv-tq_o_hiw68OZXVn7xc_mt18dcLUHlnHbtL9zCak0JMQnBBB2Xw</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Monroe, Christopher R.</creator><creator>Schoelkopf, Robert J.</creator><creator>Lukin, Mikhail D.</creator><general>Scientific American, Incorporated</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>NAPCQ</scope></search><sort><creationdate>20160501</creationdate><title>QUANTUM CONNECTIONS</title><author>Monroe, Christopher R. ; Schoelkopf, Robert J. ; Lukin, Mikhail D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-ab5e131b5030284f145a5e45da26ccc69f551091e5e053a2591fbf9121d0f88c3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer engineering</topic><topic>Quantum computing</topic><topic>Quantum theory</topic><topic>Supercomputers</topic><topic>Superconductors</topic><topic>Supermicrocomputers</topic><toplevel>online_resources</toplevel><creatorcontrib>Monroe, Christopher R.</creatorcontrib><creatorcontrib>Schoelkopf, Robert J.</creatorcontrib><creatorcontrib>Lukin, Mikhail D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Scientific American</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monroe, Christopher R.</au><au>Schoelkopf, Robert J.</au><au>Lukin, Mikhail D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QUANTUM CONNECTIONS</atitle><jtitle>Scientific American</jtitle><addtitle>Sci Am</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>314</volume><issue>5</issue><spage>50</spage><epage>57</epage><pages>50-57</pages><issn>0036-8733</issn><eissn>1946-7087</eissn><coden>SCAMAC</coden><abstract>Scientists struggle to build quantum computers big enough to be useful because large collections of particles typically stop behaving quantum mechanically and start obeying classical laws. The solution, researchers are realizing, is to construct many small quantum computers and link them together through minimal connections that do not disturb their quantum properties--an approach called modular quantum computing. Several modular methods relying on different types of quantum bits, or qubits, have recently proved successful in small tests and could soon be scaled up into larger systems. Here, Monroe et al discuss how scientists are trying to make quantum computers a reality by connecting many small networks together into one large whole.</abstract><cop>United States</cop><pub>Scientific American, Incorporated</pub><pmid>27100255</pmid><doi>10.1038/scientificamerican0516-50</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8733
ispartof Scientific American, 2016-05, Vol.314 (5), p.50-57
issn 0036-8733
1946-7087
language eng
recordid cdi_proquest_miscellaneous_1787933678
source Business Source Complete; Jstor Complete Legacy
subjects Computer engineering
Quantum computing
Quantum theory
Supercomputers
Superconductors
Supermicrocomputers
title QUANTUM CONNECTIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QUANTUM%20CONNECTIONS&rft.jtitle=Scientific%20American&rft.au=Monroe,%20Christopher%20R.&rft.date=2016-05-01&rft.volume=314&rft.issue=5&rft.spage=50&rft.epage=57&rft.pages=50-57&rft.issn=0036-8733&rft.eissn=1946-7087&rft.coden=SCAMAC&rft_id=info:doi/10.1038/scientificamerican0516-50&rft_dat=%3Cjstor_proqu%3E26046953%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1783908952&rft_id=info:pmid/27100255&rft_jstor_id=26046953&rfr_iscdi=true