Short-term water level prediction using neural networks and neuro-fuzzy approach
A comparative study on a short-term water level prediction using artificial neural networks (ANN) and neuro-fuzzy system is addressed in this paper. The performance of the traditional approaches applied for such a hydrological task can often be constrained by data availability and simplifying assump...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2003-10, Vol.55 (3), p.439-450 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 450 |
---|---|
container_issue | 3 |
container_start_page | 439 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 55 |
creator | Bazartseren, Bunchingiv Hildebrandt, Gerald Holz, K.-P. |
description | A comparative study on a short-term water level prediction using artificial neural networks (ANN) and neuro-fuzzy system is addressed in this paper. The performance of the traditional approaches applied for such a hydrological task can often be constrained by data availability and simplifying assumptions in the processes description. In this paper, the ANN and neuro-fuzzy approaches are used for handling the situations with scarce data, where the predictions are based on the upstream hydrological conditions only. The models have been tested on two different river reaches in Germany. Moreover, the obtained results are compared to those of linear statistical models. Both ANN and neuro-fuzzy systems have performed comparably well and accurate for the purpose, explicitly outperforming the linear statistical models for a longer prediction horizon. The trained neural networks are partly implemented on-line, as a prototype of a web-based water level predictor. |
doi_str_mv | 10.1016/S0925-2312(03)00388-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17878402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231203003886</els_id><sourcerecordid>17878402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-a55318b81c255eb784510e1ac57c36cff7132078e5fbbc4db5fea7ff544eec363</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiT6CGaj81uehIpfkFBoXoO2ezERrebmuy2tL_etBWvnl4YnnmHeRA6p-SaElrcTMmICcw4ZZeEXxHCpcTFARpQWTIsmSwO0eAPOUYnMX4SQkvKRgP0Op350OEOwjxb6RRZA0toskWA2pnO-Tbro2s_shb6oJsU3cqHr5jptt7NPLb9ZrPO9GIRvDazU3RkdRPh7DeH6P3h_m38hCcvj8_juwk2eS46rIXgVFaSGiYEVKXMBSVAtRGl4YWxtqSckVKCsFVl8roSFnRprchzgETwIbrY96az3z3ETs1dNNA0ugXfR0VLmUoJS6DYgyb4GANYtQhursNaUaK2_tTOn9rKUYSrnT-1PXC734P0xdJBUNE4aE3yEsB0qvbun4YftRl5Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17878402</pqid></control><display><type>article</type><title>Short-term water level prediction using neural networks and neuro-fuzzy approach</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bazartseren, Bunchingiv ; Hildebrandt, Gerald ; Holz, K.-P.</creator><creatorcontrib>Bazartseren, Bunchingiv ; Hildebrandt, Gerald ; Holz, K.-P.</creatorcontrib><description>A comparative study on a short-term water level prediction using artificial neural networks (ANN) and neuro-fuzzy system is addressed in this paper. The performance of the traditional approaches applied for such a hydrological task can often be constrained by data availability and simplifying assumptions in the processes description. In this paper, the ANN and neuro-fuzzy approaches are used for handling the situations with scarce data, where the predictions are based on the upstream hydrological conditions only. The models have been tested on two different river reaches in Germany. Moreover, the obtained results are compared to those of linear statistical models. Both ANN and neuro-fuzzy systems have performed comparably well and accurate for the purpose, explicitly outperforming the linear statistical models for a longer prediction horizon. The trained neural networks are partly implemented on-line, as a prototype of a web-based water level predictor.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/S0925-2312(03)00388-6</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Hydrology ; Neural networks ; Neuro-fuzzy systems ; On-line water level prediction</subject><ispartof>Neurocomputing (Amsterdam), 2003-10, Vol.55 (3), p.439-450</ispartof><rights>2003 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-a55318b81c255eb784510e1ac57c36cff7132078e5fbbc4db5fea7ff544eec363</citedby><cites>FETCH-LOGICAL-c445t-a55318b81c255eb784510e1ac57c36cff7132078e5fbbc4db5fea7ff544eec363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0925-2312(03)00388-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bazartseren, Bunchingiv</creatorcontrib><creatorcontrib>Hildebrandt, Gerald</creatorcontrib><creatorcontrib>Holz, K.-P.</creatorcontrib><title>Short-term water level prediction using neural networks and neuro-fuzzy approach</title><title>Neurocomputing (Amsterdam)</title><description>A comparative study on a short-term water level prediction using artificial neural networks (ANN) and neuro-fuzzy system is addressed in this paper. The performance of the traditional approaches applied for such a hydrological task can often be constrained by data availability and simplifying assumptions in the processes description. In this paper, the ANN and neuro-fuzzy approaches are used for handling the situations with scarce data, where the predictions are based on the upstream hydrological conditions only. The models have been tested on two different river reaches in Germany. Moreover, the obtained results are compared to those of linear statistical models. Both ANN and neuro-fuzzy systems have performed comparably well and accurate for the purpose, explicitly outperforming the linear statistical models for a longer prediction horizon. The trained neural networks are partly implemented on-line, as a prototype of a web-based water level predictor.</description><subject>Hydrology</subject><subject>Neural networks</subject><subject>Neuro-fuzzy systems</subject><subject>On-line water level prediction</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiT6CGaj81uehIpfkFBoXoO2ezERrebmuy2tL_etBWvnl4YnnmHeRA6p-SaElrcTMmICcw4ZZeEXxHCpcTFARpQWTIsmSwO0eAPOUYnMX4SQkvKRgP0Op350OEOwjxb6RRZA0toskWA2pnO-Tbro2s_shb6oJsU3cqHr5jptt7NPLb9ZrPO9GIRvDazU3RkdRPh7DeH6P3h_m38hCcvj8_juwk2eS46rIXgVFaSGiYEVKXMBSVAtRGl4YWxtqSckVKCsFVl8roSFnRprchzgETwIbrY96az3z3ETs1dNNA0ugXfR0VLmUoJS6DYgyb4GANYtQhursNaUaK2_tTOn9rKUYSrnT-1PXC734P0xdJBUNE4aE3yEsB0qvbun4YftRl5Mg</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Bazartseren, Bunchingiv</creator><creator>Hildebrandt, Gerald</creator><creator>Holz, K.-P.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20031001</creationdate><title>Short-term water level prediction using neural networks and neuro-fuzzy approach</title><author>Bazartseren, Bunchingiv ; Hildebrandt, Gerald ; Holz, K.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-a55318b81c255eb784510e1ac57c36cff7132078e5fbbc4db5fea7ff544eec363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Hydrology</topic><topic>Neural networks</topic><topic>Neuro-fuzzy systems</topic><topic>On-line water level prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazartseren, Bunchingiv</creatorcontrib><creatorcontrib>Hildebrandt, Gerald</creatorcontrib><creatorcontrib>Holz, K.-P.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazartseren, Bunchingiv</au><au>Hildebrandt, Gerald</au><au>Holz, K.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-term water level prediction using neural networks and neuro-fuzzy approach</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2003-10-01</date><risdate>2003</risdate><volume>55</volume><issue>3</issue><spage>439</spage><epage>450</epage><pages>439-450</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>A comparative study on a short-term water level prediction using artificial neural networks (ANN) and neuro-fuzzy system is addressed in this paper. The performance of the traditional approaches applied for such a hydrological task can often be constrained by data availability and simplifying assumptions in the processes description. In this paper, the ANN and neuro-fuzzy approaches are used for handling the situations with scarce data, where the predictions are based on the upstream hydrological conditions only. The models have been tested on two different river reaches in Germany. Moreover, the obtained results are compared to those of linear statistical models. Both ANN and neuro-fuzzy systems have performed comparably well and accurate for the purpose, explicitly outperforming the linear statistical models for a longer prediction horizon. The trained neural networks are partly implemented on-line, as a prototype of a web-based water level predictor.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0925-2312(03)00388-6</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2003-10, Vol.55 (3), p.439-450 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_proquest_miscellaneous_17878402 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Hydrology Neural networks Neuro-fuzzy systems On-line water level prediction |
title | Short-term water level prediction using neural networks and neuro-fuzzy approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-term%20water%20level%20prediction%20using%20neural%20networks%20and%20neuro-fuzzy%20approach&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Bazartseren,%20Bunchingiv&rft.date=2003-10-01&rft.volume=55&rft.issue=3&rft.spage=439&rft.epage=450&rft.pages=439-450&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/S0925-2312(03)00388-6&rft_dat=%3Cproquest_cross%3E17878402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17878402&rft_id=info:pmid/&rft_els_id=S0925231203003886&rfr_iscdi=true |