Short-term water level prediction using neural networks and neuro-fuzzy approach

A comparative study on a short-term water level prediction using artificial neural networks (ANN) and neuro-fuzzy system is addressed in this paper. The performance of the traditional approaches applied for such a hydrological task can often be constrained by data availability and simplifying assump...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2003-10, Vol.55 (3), p.439-450
Hauptverfasser: Bazartseren, Bunchingiv, Hildebrandt, Gerald, Holz, K.-P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 450
container_issue 3
container_start_page 439
container_title Neurocomputing (Amsterdam)
container_volume 55
creator Bazartseren, Bunchingiv
Hildebrandt, Gerald
Holz, K.-P.
description A comparative study on a short-term water level prediction using artificial neural networks (ANN) and neuro-fuzzy system is addressed in this paper. The performance of the traditional approaches applied for such a hydrological task can often be constrained by data availability and simplifying assumptions in the processes description. In this paper, the ANN and neuro-fuzzy approaches are used for handling the situations with scarce data, where the predictions are based on the upstream hydrological conditions only. The models have been tested on two different river reaches in Germany. Moreover, the obtained results are compared to those of linear statistical models. Both ANN and neuro-fuzzy systems have performed comparably well and accurate for the purpose, explicitly outperforming the linear statistical models for a longer prediction horizon. The trained neural networks are partly implemented on-line, as a prototype of a web-based water level predictor.
doi_str_mv 10.1016/S0925-2312(03)00388-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17878402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231203003886</els_id><sourcerecordid>17878402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-a55318b81c255eb784510e1ac57c36cff7132078e5fbbc4db5fea7ff544eec363</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiT6CGaj81uehIpfkFBoXoO2ezERrebmuy2tL_etBWvnl4YnnmHeRA6p-SaElrcTMmICcw4ZZeEXxHCpcTFARpQWTIsmSwO0eAPOUYnMX4SQkvKRgP0Op350OEOwjxb6RRZA0toskWA2pnO-Tbro2s_shb6oJsU3cqHr5jptt7NPLb9ZrPO9GIRvDazU3RkdRPh7DeH6P3h_m38hCcvj8_juwk2eS46rIXgVFaSGiYEVKXMBSVAtRGl4YWxtqSckVKCsFVl8roSFnRprchzgETwIbrY96az3z3ETs1dNNA0ugXfR0VLmUoJS6DYgyb4GANYtQhursNaUaK2_tTOn9rKUYSrnT-1PXC734P0xdJBUNE4aE3yEsB0qvbun4YftRl5Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17878402</pqid></control><display><type>article</type><title>Short-term water level prediction using neural networks and neuro-fuzzy approach</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bazartseren, Bunchingiv ; Hildebrandt, Gerald ; Holz, K.-P.</creator><creatorcontrib>Bazartseren, Bunchingiv ; Hildebrandt, Gerald ; Holz, K.-P.</creatorcontrib><description>A comparative study on a short-term water level prediction using artificial neural networks (ANN) and neuro-fuzzy system is addressed in this paper. The performance of the traditional approaches applied for such a hydrological task can often be constrained by data availability and simplifying assumptions in the processes description. In this paper, the ANN and neuro-fuzzy approaches are used for handling the situations with scarce data, where the predictions are based on the upstream hydrological conditions only. The models have been tested on two different river reaches in Germany. Moreover, the obtained results are compared to those of linear statistical models. Both ANN and neuro-fuzzy systems have performed comparably well and accurate for the purpose, explicitly outperforming the linear statistical models for a longer prediction horizon. The trained neural networks are partly implemented on-line, as a prototype of a web-based water level predictor.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/S0925-2312(03)00388-6</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Hydrology ; Neural networks ; Neuro-fuzzy systems ; On-line water level prediction</subject><ispartof>Neurocomputing (Amsterdam), 2003-10, Vol.55 (3), p.439-450</ispartof><rights>2003 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-a55318b81c255eb784510e1ac57c36cff7132078e5fbbc4db5fea7ff544eec363</citedby><cites>FETCH-LOGICAL-c445t-a55318b81c255eb784510e1ac57c36cff7132078e5fbbc4db5fea7ff544eec363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0925-2312(03)00388-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Bazartseren, Bunchingiv</creatorcontrib><creatorcontrib>Hildebrandt, Gerald</creatorcontrib><creatorcontrib>Holz, K.-P.</creatorcontrib><title>Short-term water level prediction using neural networks and neuro-fuzzy approach</title><title>Neurocomputing (Amsterdam)</title><description>A comparative study on a short-term water level prediction using artificial neural networks (ANN) and neuro-fuzzy system is addressed in this paper. The performance of the traditional approaches applied for such a hydrological task can often be constrained by data availability and simplifying assumptions in the processes description. In this paper, the ANN and neuro-fuzzy approaches are used for handling the situations with scarce data, where the predictions are based on the upstream hydrological conditions only. The models have been tested on two different river reaches in Germany. Moreover, the obtained results are compared to those of linear statistical models. Both ANN and neuro-fuzzy systems have performed comparably well and accurate for the purpose, explicitly outperforming the linear statistical models for a longer prediction horizon. The trained neural networks are partly implemented on-line, as a prototype of a web-based water level predictor.</description><subject>Hydrology</subject><subject>Neural networks</subject><subject>Neuro-fuzzy systems</subject><subject>On-line water level prediction</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiT6CGaj81uehIpfkFBoXoO2ezERrebmuy2tL_etBWvnl4YnnmHeRA6p-SaElrcTMmICcw4ZZeEXxHCpcTFARpQWTIsmSwO0eAPOUYnMX4SQkvKRgP0Op350OEOwjxb6RRZA0toskWA2pnO-Tbro2s_shb6oJsU3cqHr5jptt7NPLb9ZrPO9GIRvDazU3RkdRPh7DeH6P3h_m38hCcvj8_juwk2eS46rIXgVFaSGiYEVKXMBSVAtRGl4YWxtqSckVKCsFVl8roSFnRprchzgETwIbrY96az3z3ETs1dNNA0ugXfR0VLmUoJS6DYgyb4GANYtQhursNaUaK2_tTOn9rKUYSrnT-1PXC734P0xdJBUNE4aE3yEsB0qvbun4YftRl5Mg</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Bazartseren, Bunchingiv</creator><creator>Hildebrandt, Gerald</creator><creator>Holz, K.-P.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20031001</creationdate><title>Short-term water level prediction using neural networks and neuro-fuzzy approach</title><author>Bazartseren, Bunchingiv ; Hildebrandt, Gerald ; Holz, K.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-a55318b81c255eb784510e1ac57c36cff7132078e5fbbc4db5fea7ff544eec363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Hydrology</topic><topic>Neural networks</topic><topic>Neuro-fuzzy systems</topic><topic>On-line water level prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bazartseren, Bunchingiv</creatorcontrib><creatorcontrib>Hildebrandt, Gerald</creatorcontrib><creatorcontrib>Holz, K.-P.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bazartseren, Bunchingiv</au><au>Hildebrandt, Gerald</au><au>Holz, K.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-term water level prediction using neural networks and neuro-fuzzy approach</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2003-10-01</date><risdate>2003</risdate><volume>55</volume><issue>3</issue><spage>439</spage><epage>450</epage><pages>439-450</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>A comparative study on a short-term water level prediction using artificial neural networks (ANN) and neuro-fuzzy system is addressed in this paper. The performance of the traditional approaches applied for such a hydrological task can often be constrained by data availability and simplifying assumptions in the processes description. In this paper, the ANN and neuro-fuzzy approaches are used for handling the situations with scarce data, where the predictions are based on the upstream hydrological conditions only. The models have been tested on two different river reaches in Germany. Moreover, the obtained results are compared to those of linear statistical models. Both ANN and neuro-fuzzy systems have performed comparably well and accurate for the purpose, explicitly outperforming the linear statistical models for a longer prediction horizon. The trained neural networks are partly implemented on-line, as a prototype of a web-based water level predictor.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0925-2312(03)00388-6</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2003-10, Vol.55 (3), p.439-450
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_17878402
source ScienceDirect Journals (5 years ago - present)
subjects Hydrology
Neural networks
Neuro-fuzzy systems
On-line water level prediction
title Short-term water level prediction using neural networks and neuro-fuzzy approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-term%20water%20level%20prediction%20using%20neural%20networks%20and%20neuro-fuzzy%20approach&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Bazartseren,%20Bunchingiv&rft.date=2003-10-01&rft.volume=55&rft.issue=3&rft.spage=439&rft.epage=450&rft.pages=439-450&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/S0925-2312(03)00388-6&rft_dat=%3Cproquest_cross%3E17878402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17878402&rft_id=info:pmid/&rft_els_id=S0925231203003886&rfr_iscdi=true