A mathematical model verifying potent oncolytic efficacy of M1 virus

•Establishing a new mathematical model verifying the potent oncolytic efficacy of newly reported M1 virus.•Defining and discussing absorbing numbers which can be regarded as an index to distinguish normal cells and tumor cells.•Obtaining the explicit formulae describing minimal dosage of medication...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences 2016-06, Vol.276, p.19-27
Hauptverfasser: Wang, Zizi, Guo, Zhiming, Peng, Huaqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue
container_start_page 19
container_title Mathematical biosciences
container_volume 276
creator Wang, Zizi
Guo, Zhiming
Peng, Huaqin
description •Establishing a new mathematical model verifying the potent oncolytic efficacy of newly reported M1 virus.•Defining and discussing absorbing numbers which can be regarded as an index to distinguish normal cells and tumor cells.•Obtaining the explicit formulae describing minimal dosage of medication which is not reported in references. Motivated by the latest findings in a recent medical experiment [19] which identify a naturally occurring alphavirus (M1) as a novel selective killer targeting zinc-finger antiviral protein (ZAP)-deficient cancer cells, we propose a mathematical model to illustrate the growth of normal cells, tumor cells and the M1 virus with limited nutrient. In order to better understand biological mechanisms, we discuss two cases of the model: without competition and with competition. In the first part, the explicit threshold conditions for the persistence of normal cells (or tumor cells) is obtained accompanying with the biological explanations. The second part indicates that when competing with tumor cells, the normal cells will extinct if M1 virus is ignored; Whereas, when M1 virus is considered, the growth trend of normal cells is similar to the one without competition. And by using uniformly strong repeller theorem, the minimum effective dosage of medication is explicitly found which is not reported in [19]. Furthermore, numerical simulations and corresponding biological interpretations are given to support our results.
doi_str_mv 10.1016/j.mbs.2016.03.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1787480985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025556416000572</els_id><sourcerecordid>1787480985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-e8bb08e31eb6a260ee5a7b43b2e1fafcf800102c0cdb60079740b50bdc4e95673</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EgvLxA1iQR5aEc5zYiZgQ3xKIBWYrds7gKomLnVbqv8dVCyPL3Q3P-97dS8g5g5wBE1fzfNAxL9KYA88B2B6ZsVo2GWe83CczgKLKqkqUR-Q4xnkCJGPikBwVopGirPmM3N3QoZ2-MBVn2p4OvsOerjA4u3bjJ134CceJ-tH4fp0QitYm0Kypt_SV0ZULy3hKDmzbRzzb9RPy8XD_fvuUvbw9Pt_evGSGV3zKsNYaauQMtWgLAYhVK3XJdYHMttbYOl0IhQHTaQEgG1mCrkB3psSmEpKfkMut7yL47yXGSQ0uGuz7dkS_jIrJWpY1NHWVULZFTfAxBrRqEdzQhrVioDbhqblK4alNeAq4SpuT5mJnv9QDdn-K37QScL0FMD25chhUNA5Hg50LaCbVefeP_Q_mjX9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787480985</pqid></control><display><type>article</type><title>A mathematical model verifying potent oncolytic efficacy of M1 virus</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Zizi ; Guo, Zhiming ; Peng, Huaqin</creator><creatorcontrib>Wang, Zizi ; Guo, Zhiming ; Peng, Huaqin</creatorcontrib><description>•Establishing a new mathematical model verifying the potent oncolytic efficacy of newly reported M1 virus.•Defining and discussing absorbing numbers which can be regarded as an index to distinguish normal cells and tumor cells.•Obtaining the explicit formulae describing minimal dosage of medication which is not reported in references. Motivated by the latest findings in a recent medical experiment [19] which identify a naturally occurring alphavirus (M1) as a novel selective killer targeting zinc-finger antiviral protein (ZAP)-deficient cancer cells, we propose a mathematical model to illustrate the growth of normal cells, tumor cells and the M1 virus with limited nutrient. In order to better understand biological mechanisms, we discuss two cases of the model: without competition and with competition. In the first part, the explicit threshold conditions for the persistence of normal cells (or tumor cells) is obtained accompanying with the biological explanations. The second part indicates that when competing with tumor cells, the normal cells will extinct if M1 virus is ignored; Whereas, when M1 virus is considered, the growth trend of normal cells is similar to the one without competition. And by using uniformly strong repeller theorem, the minimum effective dosage of medication is explicitly found which is not reported in [19]. Furthermore, numerical simulations and corresponding biological interpretations are given to support our results.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2016.03.001</identifier><identifier>PMID: 26976483</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alphavirus ; Animals ; Humans ; M1 virus ; Models, Theoretical ; Neoplasms - therapy ; Oncolytic Virotherapy ; Oncolytic Viruses ; Persistence ; Stability</subject><ispartof>Mathematical biosciences, 2016-06, Vol.276, p.19-27</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-e8bb08e31eb6a260ee5a7b43b2e1fafcf800102c0cdb60079740b50bdc4e95673</citedby><cites>FETCH-LOGICAL-c353t-e8bb08e31eb6a260ee5a7b43b2e1fafcf800102c0cdb60079740b50bdc4e95673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0025556416000572$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26976483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zizi</creatorcontrib><creatorcontrib>Guo, Zhiming</creatorcontrib><creatorcontrib>Peng, Huaqin</creatorcontrib><title>A mathematical model verifying potent oncolytic efficacy of M1 virus</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>•Establishing a new mathematical model verifying the potent oncolytic efficacy of newly reported M1 virus.•Defining and discussing absorbing numbers which can be regarded as an index to distinguish normal cells and tumor cells.•Obtaining the explicit formulae describing minimal dosage of medication which is not reported in references. Motivated by the latest findings in a recent medical experiment [19] which identify a naturally occurring alphavirus (M1) as a novel selective killer targeting zinc-finger antiviral protein (ZAP)-deficient cancer cells, we propose a mathematical model to illustrate the growth of normal cells, tumor cells and the M1 virus with limited nutrient. In order to better understand biological mechanisms, we discuss two cases of the model: without competition and with competition. In the first part, the explicit threshold conditions for the persistence of normal cells (or tumor cells) is obtained accompanying with the biological explanations. The second part indicates that when competing with tumor cells, the normal cells will extinct if M1 virus is ignored; Whereas, when M1 virus is considered, the growth trend of normal cells is similar to the one without competition. And by using uniformly strong repeller theorem, the minimum effective dosage of medication is explicitly found which is not reported in [19]. Furthermore, numerical simulations and corresponding biological interpretations are given to support our results.</description><subject>Alphavirus</subject><subject>Animals</subject><subject>Humans</subject><subject>M1 virus</subject><subject>Models, Theoretical</subject><subject>Neoplasms - therapy</subject><subject>Oncolytic Virotherapy</subject><subject>Oncolytic Viruses</subject><subject>Persistence</subject><subject>Stability</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EgvLxA1iQR5aEc5zYiZgQ3xKIBWYrds7gKomLnVbqv8dVCyPL3Q3P-97dS8g5g5wBE1fzfNAxL9KYA88B2B6ZsVo2GWe83CczgKLKqkqUR-Q4xnkCJGPikBwVopGirPmM3N3QoZ2-MBVn2p4OvsOerjA4u3bjJ134CceJ-tH4fp0QitYm0Kypt_SV0ZULy3hKDmzbRzzb9RPy8XD_fvuUvbw9Pt_evGSGV3zKsNYaauQMtWgLAYhVK3XJdYHMttbYOl0IhQHTaQEgG1mCrkB3psSmEpKfkMut7yL47yXGSQ0uGuz7dkS_jIrJWpY1NHWVULZFTfAxBrRqEdzQhrVioDbhqblK4alNeAq4SpuT5mJnv9QDdn-K37QScL0FMD25chhUNA5Hg50LaCbVefeP_Q_mjX9M</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Wang, Zizi</creator><creator>Guo, Zhiming</creator><creator>Peng, Huaqin</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201606</creationdate><title>A mathematical model verifying potent oncolytic efficacy of M1 virus</title><author>Wang, Zizi ; Guo, Zhiming ; Peng, Huaqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-e8bb08e31eb6a260ee5a7b43b2e1fafcf800102c0cdb60079740b50bdc4e95673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alphavirus</topic><topic>Animals</topic><topic>Humans</topic><topic>M1 virus</topic><topic>Models, Theoretical</topic><topic>Neoplasms - therapy</topic><topic>Oncolytic Virotherapy</topic><topic>Oncolytic Viruses</topic><topic>Persistence</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zizi</creatorcontrib><creatorcontrib>Guo, Zhiming</creatorcontrib><creatorcontrib>Peng, Huaqin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zizi</au><au>Guo, Zhiming</au><au>Peng, Huaqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical model verifying potent oncolytic efficacy of M1 virus</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2016-06</date><risdate>2016</risdate><volume>276</volume><spage>19</spage><epage>27</epage><pages>19-27</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>•Establishing a new mathematical model verifying the potent oncolytic efficacy of newly reported M1 virus.•Defining and discussing absorbing numbers which can be regarded as an index to distinguish normal cells and tumor cells.•Obtaining the explicit formulae describing minimal dosage of medication which is not reported in references. Motivated by the latest findings in a recent medical experiment [19] which identify a naturally occurring alphavirus (M1) as a novel selective killer targeting zinc-finger antiviral protein (ZAP)-deficient cancer cells, we propose a mathematical model to illustrate the growth of normal cells, tumor cells and the M1 virus with limited nutrient. In order to better understand biological mechanisms, we discuss two cases of the model: without competition and with competition. In the first part, the explicit threshold conditions for the persistence of normal cells (or tumor cells) is obtained accompanying with the biological explanations. The second part indicates that when competing with tumor cells, the normal cells will extinct if M1 virus is ignored; Whereas, when M1 virus is considered, the growth trend of normal cells is similar to the one without competition. And by using uniformly strong repeller theorem, the minimum effective dosage of medication is explicitly found which is not reported in [19]. Furthermore, numerical simulations and corresponding biological interpretations are given to support our results.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>26976483</pmid><doi>10.1016/j.mbs.2016.03.001</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5564
ispartof Mathematical biosciences, 2016-06, Vol.276, p.19-27
issn 0025-5564
1879-3134
language eng
recordid cdi_proquest_miscellaneous_1787480985
source MEDLINE; Elsevier ScienceDirect Journals
subjects Alphavirus
Animals
Humans
M1 virus
Models, Theoretical
Neoplasms - therapy
Oncolytic Virotherapy
Oncolytic Viruses
Persistence
Stability
title A mathematical model verifying potent oncolytic efficacy of M1 virus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20model%20verifying%20potent%20oncolytic%20efficacy%20of%20M1%20virus&rft.jtitle=Mathematical%20biosciences&rft.au=Wang,%20Zizi&rft.date=2016-06&rft.volume=276&rft.spage=19&rft.epage=27&rft.pages=19-27&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2016.03.001&rft_dat=%3Cproquest_cross%3E1787480985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787480985&rft_id=info:pmid/26976483&rft_els_id=S0025556416000572&rfr_iscdi=true