PT symmetry breaking and nonlinear optical isolation in coupled microcavities

We perform a theoretical study of the nonlinear dynamics of nonlinear optical isolator devices based on coupled microcavities with gain and loss. This reveals a correspondence between the boundary of asymptotic stability in the nonlinear regime, where gain saturation is present, and the PT -breaking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2016-04, Vol.24 (7), p.6916-6930
Hauptverfasser: Zhou, Xin, Chong, Y D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We perform a theoretical study of the nonlinear dynamics of nonlinear optical isolator devices based on coupled microcavities with gain and loss. This reveals a correspondence between the boundary of asymptotic stability in the nonlinear regime, where gain saturation is present, and the PT -breaking transition in the underlying linear system. For zero detuning and weak input intensity, the onset of optical isolation can be rigorously derived, and corresponds precisely to the transition into the PT -broken phase of the linear system. When the couplings to the external ports are unequal, the isolation ratio exhibits an abrupt jump at the transition point, whose magnitude is given by the ratio of the couplings. This phenomenon could be exploited to realize an actively controlled nonlinear optical isolator, in which strong optical isolation can be turned on and off by tiny variations in the inter-resonator separation.
ISSN:1094-4087
1094-4087
DOI:10.1364/oe.24.006916