Role of Mig-6 in hepatic glucose metabolism

Background Mitogen‐inducible gene 6 (Mig‐6) has an important role in the regulation of cholesterol homeostasis and bile acid synthesis. However, the physiological functions of Mig‐6 in the liver remain poorly understood. Methods To investigate Mig‐6 functioning in the liver, we used conditionally ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of diabetes 2016-01, Vol.8 (1), p.86-97
Hauptverfasser: Yoo, Jung-Yoon, Kim, Tae Hoon, Kong, Sieun, Lee, Ju Hee, Choi, Wonseok, Kim, Koon Soon, Kim, Hyun Jin, Jeong, Jae-Wook, Ku, Bon Jeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 1
container_start_page 86
container_title Journal of diabetes
container_volume 8
creator Yoo, Jung-Yoon
Kim, Tae Hoon
Kong, Sieun
Lee, Ju Hee
Choi, Wonseok
Kim, Koon Soon
Kim, Hyun Jin
Jeong, Jae-Wook
Ku, Bon Jeong
description Background Mitogen‐inducible gene 6 (Mig‐6) has an important role in the regulation of cholesterol homeostasis and bile acid synthesis. However, the physiological functions of Mig‐6 in the liver remain poorly understood. Methods To investigate Mig‐6 functioning in the liver, we used conditionally ablated Mig‐6 using the Albumin‐Cre mouse model (Albcre/+Mig‐6f/f; Mig‐6d/d). Male mice were killed after a 24‐h fast and refed after 24 h fasting. Fasting glucose and insulin levels were measured and western blot analyses were performed to determine epidermal growth factor receptor (EGFR), extracellular signal‐regulated kinase (ERK) 1/2, AKT, mammalian target of rapamycin (mTOR), c‐Jun N‐terminal kinase (JNK), and Insulin receptor substrate‐1 (IRS‐1) in liver tissue samples. In addition, human hepatocellular carcinoma HepG2 cells were transfected with Mig‐6 short interference (si) RNA before western blot analysis. Results Serum fasting glucose levels were significantly higher in Mig‐6d/d versus Mig‐6f/f mice. On an insulin tolerance test, insulin sensitivity was decreased in Mig‐6d/d versus Mig‐6f/f mice. Furthermore, hepatic expression of the glucokinase (Gck), glucose‐6‐phosphatase (G6pc), and phosphoenolpyruvate carboxykinase 1 (Pck1) genes was decreased significantly in Mig‐6d/d mice. Phosphorylation of EGFR, ERK1/2, AKT, mTOR, JNK, and IRS‐1 was increased in Mig‐6d/d compared with Mig‐6f/f mice. Conclusion Liver‐specific ablation of Mig‐6 caused hyperglycemia by hepatic insulin resistance. Increased EGFR signaling following Mig‐6 ablation activated JNK and eventually induced insulin resistance by increasing phosphorylation of IRS‐1 at serine 307. This is the first report of Mig‐6 involvement in hepatic insulin resistance and a new mechanism that explains hepatic insulin resistance. 摘要 背景 有丝分裂原诱导基因(Mitogen‐inducible gene 6,Mig‐6)具有重要的调节胆固醇动态平衡以及胆汁酸合成的作用。然而,目前我们仍然对Mig‐6在肝脏的生理功能知之甚少。 方法 为了调查Mig‐6在肝脏的功能,我们在Albumin‐Cre小鼠模型(Albcre/+Mig‐6f/f;Mig‐6d/d)中有条件地敲除了Mig‐6。雄性小鼠禁食24小时后再恢复喂食,之后再处死。测定了空腹血糖与胰岛素水平,并且使用western blot分析法测定了肝组织样本中的表皮生长因子受体(determine epidermal growth factor receptor,EGFR)、细胞外信号调节激酶(extracellular signal‐regulated kinase,ERK)1/2、AKT、哺乳动物雷帕霉素靶蛋白(mammalian target of Rapamycin,mTOR)、c‐Jun氨基末端激酶(c‐Jun N‐terminal kinase,JNK)以及胰岛素受体底物‐1(Insulin receptor substrate‐1,IRS‐1)。另外,在进行western blot分析之前还使用Mig‐6短干扰(si)RNA来转染人类肝细胞癌HepG2细胞。 结果 与Mig‐6f/f小鼠相比,Mig‐6d/d小鼠的血清空腹血糖水平显著更高。在胰岛素耐量试验中,与Mig‐6f/f小鼠相比,Mig‐6d/d小鼠的胰岛素敏感性下降了。此外,在Mig‐6d/d小鼠中,肝脏表达的葡萄糖激酶、葡萄糖‐6‐磷酸酶以及磷酸烯醇式丙酮酸
doi_str_mv 10.1111/1753-0407.12261
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786796968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786796968</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3611-facf5b5837647990d6467a17804e605b8473c1a866d65bb18ce51694519beb3b3</originalsourceid><addsrcrecordid>eNo9kM1PwzAMxSMEYmNw5oZ6REIdyZI4zREGDNAGEhoCcYmSLh2BdB1NK9h_T_fpiy37vSf5h9ApwV3S1CURnMaYYdElvR6QPdTebfa3M5W0hY5C-MIYBAA9RK0e55IlHLfRxUvhbVRk0chNY4jcLPq0c125NJr6Oi2CjXJbaVN4F_JjdJBpH-zJpnfQ693tuH8fD58HD_2rYewoEBJnOs244QkVwISUeAIMhCYiwcwC5iZhgqZEJwAT4MaQJLWcgGScSGMNNbSDzte587L4qW2oVO5Car3XM1vUQTVRICRISBrp2UZam9xO1Lx0uS4XavtgI-Brwa_zdrG7E6yW_NSSkFrSUit-6vHmejU0vnjtc6GyfzufLr8VCCq4ensaqPH76AMPBFOU_gOL5G1D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786796968</pqid></control><display><type>article</type><title>Role of Mig-6 in hepatic glucose metabolism</title><source>Wiley-Blackwell Open Access Titles</source><creator>Yoo, Jung-Yoon ; Kim, Tae Hoon ; Kong, Sieun ; Lee, Ju Hee ; Choi, Wonseok ; Kim, Koon Soon ; Kim, Hyun Jin ; Jeong, Jae-Wook ; Ku, Bon Jeong</creator><creatorcontrib>Yoo, Jung-Yoon ; Kim, Tae Hoon ; Kong, Sieun ; Lee, Ju Hee ; Choi, Wonseok ; Kim, Koon Soon ; Kim, Hyun Jin ; Jeong, Jae-Wook ; Ku, Bon Jeong</creatorcontrib><description>Background Mitogen‐inducible gene 6 (Mig‐6) has an important role in the regulation of cholesterol homeostasis and bile acid synthesis. However, the physiological functions of Mig‐6 in the liver remain poorly understood. Methods To investigate Mig‐6 functioning in the liver, we used conditionally ablated Mig‐6 using the Albumin‐Cre mouse model (Albcre/+Mig‐6f/f; Mig‐6d/d). Male mice were killed after a 24‐h fast and refed after 24 h fasting. Fasting glucose and insulin levels were measured and western blot analyses were performed to determine epidermal growth factor receptor (EGFR), extracellular signal‐regulated kinase (ERK) 1/2, AKT, mammalian target of rapamycin (mTOR), c‐Jun N‐terminal kinase (JNK), and Insulin receptor substrate‐1 (IRS‐1) in liver tissue samples. In addition, human hepatocellular carcinoma HepG2 cells were transfected with Mig‐6 short interference (si) RNA before western blot analysis. Results Serum fasting glucose levels were significantly higher in Mig‐6d/d versus Mig‐6f/f mice. On an insulin tolerance test, insulin sensitivity was decreased in Mig‐6d/d versus Mig‐6f/f mice. Furthermore, hepatic expression of the glucokinase (Gck), glucose‐6‐phosphatase (G6pc), and phosphoenolpyruvate carboxykinase 1 (Pck1) genes was decreased significantly in Mig‐6d/d mice. Phosphorylation of EGFR, ERK1/2, AKT, mTOR, JNK, and IRS‐1 was increased in Mig‐6d/d compared with Mig‐6f/f mice. Conclusion Liver‐specific ablation of Mig‐6 caused hyperglycemia by hepatic insulin resistance. Increased EGFR signaling following Mig‐6 ablation activated JNK and eventually induced insulin resistance by increasing phosphorylation of IRS‐1 at serine 307. This is the first report of Mig‐6 involvement in hepatic insulin resistance and a new mechanism that explains hepatic insulin resistance. 摘要 背景 有丝分裂原诱导基因(Mitogen‐inducible gene 6,Mig‐6)具有重要的调节胆固醇动态平衡以及胆汁酸合成的作用。然而,目前我们仍然对Mig‐6在肝脏的生理功能知之甚少。 方法 为了调查Mig‐6在肝脏的功能,我们在Albumin‐Cre小鼠模型(Albcre/+Mig‐6f/f;Mig‐6d/d)中有条件地敲除了Mig‐6。雄性小鼠禁食24小时后再恢复喂食,之后再处死。测定了空腹血糖与胰岛素水平,并且使用western blot分析法测定了肝组织样本中的表皮生长因子受体(determine epidermal growth factor receptor,EGFR)、细胞外信号调节激酶(extracellular signal‐regulated kinase,ERK)1/2、AKT、哺乳动物雷帕霉素靶蛋白(mammalian target of Rapamycin,mTOR)、c‐Jun氨基末端激酶(c‐Jun N‐terminal kinase,JNK)以及胰岛素受体底物‐1(Insulin receptor substrate‐1,IRS‐1)。另外,在进行western blot分析之前还使用Mig‐6短干扰(si)RNA来转染人类肝细胞癌HepG2细胞。 结果 与Mig‐6f/f小鼠相比,Mig‐6d/d小鼠的血清空腹血糖水平显著更高。在胰岛素耐量试验中,与Mig‐6f/f小鼠相比,Mig‐6d/d小鼠的胰岛素敏感性下降了。此外,在Mig‐6d/d小鼠中,肝脏表达的葡萄糖激酶、葡萄糖‐6‐磷酸酶以及磷酸烯醇式丙酮酸羧化酶1的基因显著减少了。与Mig‐6f/f小鼠相比较,在Mig‐6d/d小鼠中EGFR、ERK1/2、AKT、mTOR、JNK以及IRS‐1的磷酸化增加了。 结论 特异性地敲除肝脏Mig‐6以后可导致肝脏胰岛素抵抗最终发生高血糖。敲除Mig‐6之后增强了的EGFR信号可激活JNK并且最终通过增加丝氨酸307上的IRS‐1磷酸化而导致胰岛素抵抗。这是关于Mig‐6与肝脏胰岛素抵抗有关的第一次报告,并且这是一种新的可以解释肝脏胰岛素抵抗的机制。</description><identifier>ISSN: 1753-0393</identifier><identifier>EISSN: 1753-0407</identifier><identifier>DOI: 10.1111/1753-0407.12261</identifier><identifier>PMID: 25594850</identifier><language>eng</language><publisher>Australia: Blackwell Publishing Ltd</publisher><subject>Animals ; Blotting, Western ; Glucose - metabolism ; Hep G2 Cells ; Homeostasis ; Humans ; Hyperglycemia - metabolism ; Hyperglycemia - pathology ; insulin ; Insulin - metabolism ; Insulin Receptor Substrate Proteins - genetics ; Insulin Receptor Substrate Proteins - metabolism ; Insulin Resistance ; Integrases - metabolism ; Intracellular Signaling Peptides and Proteins - antagonists &amp; inhibitors ; Intracellular Signaling Peptides and Proteins - physiology ; liver ; Liver - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mig-6 ; Phosphorylation ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; Real-Time Polymerase Chain Reaction ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA, Small Interfering - genetics ; Signal Transduction ; 肝脏 ; 胰岛素 ; 葡萄糖代谢</subject><ispartof>Journal of diabetes, 2016-01, Vol.8 (1), p.86-97</ispartof><rights>2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd</rights><rights>2015 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1753-0407.12261$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1753-0407.12261$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2F1753-0407.12261$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25594850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoo, Jung-Yoon</creatorcontrib><creatorcontrib>Kim, Tae Hoon</creatorcontrib><creatorcontrib>Kong, Sieun</creatorcontrib><creatorcontrib>Lee, Ju Hee</creatorcontrib><creatorcontrib>Choi, Wonseok</creatorcontrib><creatorcontrib>Kim, Koon Soon</creatorcontrib><creatorcontrib>Kim, Hyun Jin</creatorcontrib><creatorcontrib>Jeong, Jae-Wook</creatorcontrib><creatorcontrib>Ku, Bon Jeong</creatorcontrib><title>Role of Mig-6 in hepatic glucose metabolism</title><title>Journal of diabetes</title><addtitle>Journal of Diabetes</addtitle><description>Background Mitogen‐inducible gene 6 (Mig‐6) has an important role in the regulation of cholesterol homeostasis and bile acid synthesis. However, the physiological functions of Mig‐6 in the liver remain poorly understood. Methods To investigate Mig‐6 functioning in the liver, we used conditionally ablated Mig‐6 using the Albumin‐Cre mouse model (Albcre/+Mig‐6f/f; Mig‐6d/d). Male mice were killed after a 24‐h fast and refed after 24 h fasting. Fasting glucose and insulin levels were measured and western blot analyses were performed to determine epidermal growth factor receptor (EGFR), extracellular signal‐regulated kinase (ERK) 1/2, AKT, mammalian target of rapamycin (mTOR), c‐Jun N‐terminal kinase (JNK), and Insulin receptor substrate‐1 (IRS‐1) in liver tissue samples. In addition, human hepatocellular carcinoma HepG2 cells were transfected with Mig‐6 short interference (si) RNA before western blot analysis. Results Serum fasting glucose levels were significantly higher in Mig‐6d/d versus Mig‐6f/f mice. On an insulin tolerance test, insulin sensitivity was decreased in Mig‐6d/d versus Mig‐6f/f mice. Furthermore, hepatic expression of the glucokinase (Gck), glucose‐6‐phosphatase (G6pc), and phosphoenolpyruvate carboxykinase 1 (Pck1) genes was decreased significantly in Mig‐6d/d mice. Phosphorylation of EGFR, ERK1/2, AKT, mTOR, JNK, and IRS‐1 was increased in Mig‐6d/d compared with Mig‐6f/f mice. Conclusion Liver‐specific ablation of Mig‐6 caused hyperglycemia by hepatic insulin resistance. Increased EGFR signaling following Mig‐6 ablation activated JNK and eventually induced insulin resistance by increasing phosphorylation of IRS‐1 at serine 307. This is the first report of Mig‐6 involvement in hepatic insulin resistance and a new mechanism that explains hepatic insulin resistance. 摘要 背景 有丝分裂原诱导基因(Mitogen‐inducible gene 6,Mig‐6)具有重要的调节胆固醇动态平衡以及胆汁酸合成的作用。然而,目前我们仍然对Mig‐6在肝脏的生理功能知之甚少。 方法 为了调查Mig‐6在肝脏的功能,我们在Albumin‐Cre小鼠模型(Albcre/+Mig‐6f/f;Mig‐6d/d)中有条件地敲除了Mig‐6。雄性小鼠禁食24小时后再恢复喂食,之后再处死。测定了空腹血糖与胰岛素水平,并且使用western blot分析法测定了肝组织样本中的表皮生长因子受体(determine epidermal growth factor receptor,EGFR)、细胞外信号调节激酶(extracellular signal‐regulated kinase,ERK)1/2、AKT、哺乳动物雷帕霉素靶蛋白(mammalian target of Rapamycin,mTOR)、c‐Jun氨基末端激酶(c‐Jun N‐terminal kinase,JNK)以及胰岛素受体底物‐1(Insulin receptor substrate‐1,IRS‐1)。另外,在进行western blot分析之前还使用Mig‐6短干扰(si)RNA来转染人类肝细胞癌HepG2细胞。 结果 与Mig‐6f/f小鼠相比,Mig‐6d/d小鼠的血清空腹血糖水平显著更高。在胰岛素耐量试验中,与Mig‐6f/f小鼠相比,Mig‐6d/d小鼠的胰岛素敏感性下降了。此外,在Mig‐6d/d小鼠中,肝脏表达的葡萄糖激酶、葡萄糖‐6‐磷酸酶以及磷酸烯醇式丙酮酸羧化酶1的基因显著减少了。与Mig‐6f/f小鼠相比较,在Mig‐6d/d小鼠中EGFR、ERK1/2、AKT、mTOR、JNK以及IRS‐1的磷酸化增加了。 结论 特异性地敲除肝脏Mig‐6以后可导致肝脏胰岛素抵抗最终发生高血糖。敲除Mig‐6之后增强了的EGFR信号可激活JNK并且最终通过增加丝氨酸307上的IRS‐1磷酸化而导致胰岛素抵抗。这是关于Mig‐6与肝脏胰岛素抵抗有关的第一次报告,并且这是一种新的可以解释肝脏胰岛素抵抗的机制。</description><subject>Animals</subject><subject>Blotting, Western</subject><subject>Glucose - metabolism</subject><subject>Hep G2 Cells</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hyperglycemia - metabolism</subject><subject>Hyperglycemia - pathology</subject><subject>insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin Receptor Substrate Proteins - genetics</subject><subject>Insulin Receptor Substrate Proteins - metabolism</subject><subject>Insulin Resistance</subject><subject>Integrases - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins - antagonists &amp; inhibitors</subject><subject>Intracellular Signaling Peptides and Proteins - physiology</subject><subject>liver</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mig-6</subject><subject>Phosphorylation</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Small Interfering - genetics</subject><subject>Signal Transduction</subject><subject>肝脏</subject><subject>胰岛素</subject><subject>葡萄糖代谢</subject><issn>1753-0393</issn><issn>1753-0407</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kM1PwzAMxSMEYmNw5oZ6REIdyZI4zREGDNAGEhoCcYmSLh2BdB1NK9h_T_fpiy37vSf5h9ApwV3S1CURnMaYYdElvR6QPdTebfa3M5W0hY5C-MIYBAA9RK0e55IlHLfRxUvhbVRk0chNY4jcLPq0c125NJr6Oi2CjXJbaVN4F_JjdJBpH-zJpnfQ693tuH8fD58HD_2rYewoEBJnOs244QkVwISUeAIMhCYiwcwC5iZhgqZEJwAT4MaQJLWcgGScSGMNNbSDzte587L4qW2oVO5Car3XM1vUQTVRICRISBrp2UZam9xO1Lx0uS4XavtgI-Brwa_zdrG7E6yW_NSSkFrSUit-6vHmejU0vnjtc6GyfzufLr8VCCq4ensaqPH76AMPBFOU_gOL5G1D</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Yoo, Jung-Yoon</creator><creator>Kim, Tae Hoon</creator><creator>Kong, Sieun</creator><creator>Lee, Ju Hee</creator><creator>Choi, Wonseok</creator><creator>Kim, Koon Soon</creator><creator>Kim, Hyun Jin</creator><creator>Jeong, Jae-Wook</creator><creator>Ku, Bon Jeong</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201601</creationdate><title>Role of Mig-6 in hepatic glucose metabolism</title><author>Yoo, Jung-Yoon ; Kim, Tae Hoon ; Kong, Sieun ; Lee, Ju Hee ; Choi, Wonseok ; Kim, Koon Soon ; Kim, Hyun Jin ; Jeong, Jae-Wook ; Ku, Bon Jeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3611-facf5b5837647990d6467a17804e605b8473c1a866d65bb18ce51694519beb3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Blotting, Western</topic><topic>Glucose - metabolism</topic><topic>Hep G2 Cells</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hyperglycemia - metabolism</topic><topic>Hyperglycemia - pathology</topic><topic>insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin Receptor Substrate Proteins - genetics</topic><topic>Insulin Receptor Substrate Proteins - metabolism</topic><topic>Insulin Resistance</topic><topic>Integrases - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins - antagonists &amp; inhibitors</topic><topic>Intracellular Signaling Peptides and Proteins - physiology</topic><topic>liver</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mig-6</topic><topic>Phosphorylation</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Small Interfering - genetics</topic><topic>Signal Transduction</topic><topic>肝脏</topic><topic>胰岛素</topic><topic>葡萄糖代谢</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Jung-Yoon</creatorcontrib><creatorcontrib>Kim, Tae Hoon</creatorcontrib><creatorcontrib>Kong, Sieun</creatorcontrib><creatorcontrib>Lee, Ju Hee</creatorcontrib><creatorcontrib>Choi, Wonseok</creatorcontrib><creatorcontrib>Kim, Koon Soon</creatorcontrib><creatorcontrib>Kim, Hyun Jin</creatorcontrib><creatorcontrib>Jeong, Jae-Wook</creatorcontrib><creatorcontrib>Ku, Bon Jeong</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of diabetes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoo, Jung-Yoon</au><au>Kim, Tae Hoon</au><au>Kong, Sieun</au><au>Lee, Ju Hee</au><au>Choi, Wonseok</au><au>Kim, Koon Soon</au><au>Kim, Hyun Jin</au><au>Jeong, Jae-Wook</au><au>Ku, Bon Jeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Mig-6 in hepatic glucose metabolism</atitle><jtitle>Journal of diabetes</jtitle><addtitle>Journal of Diabetes</addtitle><date>2016-01</date><risdate>2016</risdate><volume>8</volume><issue>1</issue><spage>86</spage><epage>97</epage><pages>86-97</pages><issn>1753-0393</issn><eissn>1753-0407</eissn><abstract>Background Mitogen‐inducible gene 6 (Mig‐6) has an important role in the regulation of cholesterol homeostasis and bile acid synthesis. However, the physiological functions of Mig‐6 in the liver remain poorly understood. Methods To investigate Mig‐6 functioning in the liver, we used conditionally ablated Mig‐6 using the Albumin‐Cre mouse model (Albcre/+Mig‐6f/f; Mig‐6d/d). Male mice were killed after a 24‐h fast and refed after 24 h fasting. Fasting glucose and insulin levels were measured and western blot analyses were performed to determine epidermal growth factor receptor (EGFR), extracellular signal‐regulated kinase (ERK) 1/2, AKT, mammalian target of rapamycin (mTOR), c‐Jun N‐terminal kinase (JNK), and Insulin receptor substrate‐1 (IRS‐1) in liver tissue samples. In addition, human hepatocellular carcinoma HepG2 cells were transfected with Mig‐6 short interference (si) RNA before western blot analysis. Results Serum fasting glucose levels were significantly higher in Mig‐6d/d versus Mig‐6f/f mice. On an insulin tolerance test, insulin sensitivity was decreased in Mig‐6d/d versus Mig‐6f/f mice. Furthermore, hepatic expression of the glucokinase (Gck), glucose‐6‐phosphatase (G6pc), and phosphoenolpyruvate carboxykinase 1 (Pck1) genes was decreased significantly in Mig‐6d/d mice. Phosphorylation of EGFR, ERK1/2, AKT, mTOR, JNK, and IRS‐1 was increased in Mig‐6d/d compared with Mig‐6f/f mice. Conclusion Liver‐specific ablation of Mig‐6 caused hyperglycemia by hepatic insulin resistance. Increased EGFR signaling following Mig‐6 ablation activated JNK and eventually induced insulin resistance by increasing phosphorylation of IRS‐1 at serine 307. This is the first report of Mig‐6 involvement in hepatic insulin resistance and a new mechanism that explains hepatic insulin resistance. 摘要 背景 有丝分裂原诱导基因(Mitogen‐inducible gene 6,Mig‐6)具有重要的调节胆固醇动态平衡以及胆汁酸合成的作用。然而,目前我们仍然对Mig‐6在肝脏的生理功能知之甚少。 方法 为了调查Mig‐6在肝脏的功能,我们在Albumin‐Cre小鼠模型(Albcre/+Mig‐6f/f;Mig‐6d/d)中有条件地敲除了Mig‐6。雄性小鼠禁食24小时后再恢复喂食,之后再处死。测定了空腹血糖与胰岛素水平,并且使用western blot分析法测定了肝组织样本中的表皮生长因子受体(determine epidermal growth factor receptor,EGFR)、细胞外信号调节激酶(extracellular signal‐regulated kinase,ERK)1/2、AKT、哺乳动物雷帕霉素靶蛋白(mammalian target of Rapamycin,mTOR)、c‐Jun氨基末端激酶(c‐Jun N‐terminal kinase,JNK)以及胰岛素受体底物‐1(Insulin receptor substrate‐1,IRS‐1)。另外,在进行western blot分析之前还使用Mig‐6短干扰(si)RNA来转染人类肝细胞癌HepG2细胞。 结果 与Mig‐6f/f小鼠相比,Mig‐6d/d小鼠的血清空腹血糖水平显著更高。在胰岛素耐量试验中,与Mig‐6f/f小鼠相比,Mig‐6d/d小鼠的胰岛素敏感性下降了。此外,在Mig‐6d/d小鼠中,肝脏表达的葡萄糖激酶、葡萄糖‐6‐磷酸酶以及磷酸烯醇式丙酮酸羧化酶1的基因显著减少了。与Mig‐6f/f小鼠相比较,在Mig‐6d/d小鼠中EGFR、ERK1/2、AKT、mTOR、JNK以及IRS‐1的磷酸化增加了。 结论 特异性地敲除肝脏Mig‐6以后可导致肝脏胰岛素抵抗最终发生高血糖。敲除Mig‐6之后增强了的EGFR信号可激活JNK并且最终通过增加丝氨酸307上的IRS‐1磷酸化而导致胰岛素抵抗。这是关于Mig‐6与肝脏胰岛素抵抗有关的第一次报告,并且这是一种新的可以解释肝脏胰岛素抵抗的机制。</abstract><cop>Australia</cop><pub>Blackwell Publishing Ltd</pub><pmid>25594850</pmid><doi>10.1111/1753-0407.12261</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1753-0393
ispartof Journal of diabetes, 2016-01, Vol.8 (1), p.86-97
issn 1753-0393
1753-0407
language eng
recordid cdi_proquest_miscellaneous_1786796968
source Wiley-Blackwell Open Access Titles
subjects Animals
Blotting, Western
Glucose - metabolism
Hep G2 Cells
Homeostasis
Humans
Hyperglycemia - metabolism
Hyperglycemia - pathology
insulin
Insulin - metabolism
Insulin Receptor Substrate Proteins - genetics
Insulin Receptor Substrate Proteins - metabolism
Insulin Resistance
Integrases - metabolism
Intracellular Signaling Peptides and Proteins - antagonists & inhibitors
Intracellular Signaling Peptides and Proteins - physiology
liver
Liver - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Mig-6
Phosphorylation
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
RNA, Small Interfering - genetics
Signal Transduction
肝脏
胰岛素
葡萄糖代谢
title Role of Mig-6 in hepatic glucose metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Mig-6%20in%20hepatic%20glucose%20metabolism&rft.jtitle=Journal%20of%20diabetes&rft.au=Yoo,%20Jung-Yoon&rft.date=2016-01&rft.volume=8&rft.issue=1&rft.spage=86&rft.epage=97&rft.pages=86-97&rft.issn=1753-0393&rft.eissn=1753-0407&rft_id=info:doi/10.1111/1753-0407.12261&rft_dat=%3Cproquest_24P%3E1786796968%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786796968&rft_id=info:pmid/25594850&rfr_iscdi=true