Probabilistic archetypal analysis

Archetypal analysis represents a set of observations as convex combinations of pure patterns, or archetypes. The original geometric formulation of finding archetypes by approximating the convex hull of the observations assumes them to be real–valued. This, unfortunately, is not compatible with many...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2016-01, Vol.102 (1), p.85-113
Hauptverfasser: Seth, Sohan, Eugster, Manuel J. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 85
container_title Machine learning
container_volume 102
creator Seth, Sohan
Eugster, Manuel J. A.
description Archetypal analysis represents a set of observations as convex combinations of pure patterns, or archetypes. The original geometric formulation of finding archetypes by approximating the convex hull of the observations assumes them to be real–valued. This, unfortunately, is not compatible with many practical situations. In this paper we revisit archetypal analysis from the basic principles, and propose a probabilistic framework that accommodates other observation types such as integers, binary, and probability vectors. We corroborate the proposed methodology with convincing real-world applications on finding archetypal soccer players based on performance data, archetypal winter tourists based on binary survey data, archetypal disaster-affected countries based on disaster count data, and document archetypes based on term-frequency data. We also present an appropriate visualization tool to summarize archetypal analysis solution better.
doi_str_mv 10.1007/s10994-015-5498-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786224903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786224903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-b6fd8551c484093b8788838e6b3dea98f1be7151919467bc793ac5d50ff119c43</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMoWB8_wF3FjZtobp43Sym-oKALXYckzeiUaacm00X_vSnjQgRXd3POx-UQcgHsBhgztwWYtZIyUFRJixQPyASUEZQprQ7JhCEqqoGrY3JSypIxxjXqCbl8zX3woe3aMrRx6nP8TMNu47upX_tuV9pyRo4a35V0_nNPyfvD_dvsic5fHp9nd3MapeYDDbpZoFIQJUpmRUCDiAKTDmKRvMUGQjKgwIKV2oRorPBRLRRrGgAbpTgl1-PuJvdf21QGt2pLTF3n16nfFgcGNefSMlHRqz_ost_m-u-eUlxATWErBSMVc19KTo3b5Hbl884Bc_tobozmajS3j-awOnx0SmXXHyn_Wv5X-gbTYWzb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752319949</pqid></control><display><type>article</type><title>Probabilistic archetypal analysis</title><source>Springer Nature - Complete Springer Journals</source><creator>Seth, Sohan ; Eugster, Manuel J. A.</creator><creatorcontrib>Seth, Sohan ; Eugster, Manuel J. A.</creatorcontrib><description>Archetypal analysis represents a set of observations as convex combinations of pure patterns, or archetypes. The original geometric formulation of finding archetypes by approximating the convex hull of the observations assumes them to be real–valued. This, unfortunately, is not compatible with many practical situations. In this paper we revisit archetypal analysis from the basic principles, and propose a probabilistic framework that accommodates other observation types such as integers, binary, and probability vectors. We corroborate the proposed methodology with convincing real-world applications on finding archetypal soccer players based on performance data, archetypal winter tourists based on binary survey data, archetypal disaster-affected countries based on disaster count data, and document archetypes based on term-frequency data. We also present an appropriate visualization tool to summarize archetypal analysis solution better.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-015-5498-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Control ; Disasters ; Integers ; Mathematical analysis ; Mechatronics ; Methodology ; Natural Language Processing (NLP) ; Probabilistic methods ; Probability distribution ; Probability theory ; Robotics ; Simulation and Modeling ; Vectors (mathematics)</subject><ispartof>Machine learning, 2016-01, Vol.102 (1), p.85-113</ispartof><rights>The Author(s) 2015</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-b6fd8551c484093b8788838e6b3dea98f1be7151919467bc793ac5d50ff119c43</citedby><cites>FETCH-LOGICAL-c462t-b6fd8551c484093b8788838e6b3dea98f1be7151919467bc793ac5d50ff119c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-015-5498-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-015-5498-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Seth, Sohan</creatorcontrib><creatorcontrib>Eugster, Manuel J. A.</creatorcontrib><title>Probabilistic archetypal analysis</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Archetypal analysis represents a set of observations as convex combinations of pure patterns, or archetypes. The original geometric formulation of finding archetypes by approximating the convex hull of the observations assumes them to be real–valued. This, unfortunately, is not compatible with many practical situations. In this paper we revisit archetypal analysis from the basic principles, and propose a probabilistic framework that accommodates other observation types such as integers, binary, and probability vectors. We corroborate the proposed methodology with convincing real-world applications on finding archetypal soccer players based on performance data, archetypal winter tourists based on binary survey data, archetypal disaster-affected countries based on disaster count data, and document archetypes based on term-frequency data. We also present an appropriate visualization tool to summarize archetypal analysis solution better.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Disasters</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mechatronics</subject><subject>Methodology</subject><subject>Natural Language Processing (NLP)</subject><subject>Probabilistic methods</subject><subject>Probability distribution</subject><subject>Probability theory</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Vectors (mathematics)</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEURoMoWB8_wF3FjZtobp43Sym-oKALXYckzeiUaacm00X_vSnjQgRXd3POx-UQcgHsBhgztwWYtZIyUFRJixQPyASUEZQprQ7JhCEqqoGrY3JSypIxxjXqCbl8zX3woe3aMrRx6nP8TMNu47upX_tuV9pyRo4a35V0_nNPyfvD_dvsic5fHp9nd3MapeYDDbpZoFIQJUpmRUCDiAKTDmKRvMUGQjKgwIKV2oRorPBRLRRrGgAbpTgl1-PuJvdf21QGt2pLTF3n16nfFgcGNefSMlHRqz_ost_m-u-eUlxATWErBSMVc19KTo3b5Hbl884Bc_tobozmajS3j-awOnx0SmXXHyn_Wv5X-gbTYWzb</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Seth, Sohan</creator><creator>Eugster, Manuel J. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>Probabilistic archetypal analysis</title><author>Seth, Sohan ; Eugster, Manuel J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-b6fd8551c484093b8788838e6b3dea98f1be7151919467bc793ac5d50ff119c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Disasters</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mechatronics</topic><topic>Methodology</topic><topic>Natural Language Processing (NLP)</topic><topic>Probabilistic methods</topic><topic>Probability distribution</topic><topic>Probability theory</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seth, Sohan</creatorcontrib><creatorcontrib>Eugster, Manuel J. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seth, Sohan</au><au>Eugster, Manuel J. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic archetypal analysis</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>102</volume><issue>1</issue><spage>85</spage><epage>113</epage><pages>85-113</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Archetypal analysis represents a set of observations as convex combinations of pure patterns, or archetypes. The original geometric formulation of finding archetypes by approximating the convex hull of the observations assumes them to be real–valued. This, unfortunately, is not compatible with many practical situations. In this paper we revisit archetypal analysis from the basic principles, and propose a probabilistic framework that accommodates other observation types such as integers, binary, and probability vectors. We corroborate the proposed methodology with convincing real-world applications on finding archetypal soccer players based on performance data, archetypal winter tourists based on binary survey data, archetypal disaster-affected countries based on disaster count data, and document archetypes based on term-frequency data. We also present an appropriate visualization tool to summarize archetypal analysis solution better.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-015-5498-8</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2016-01, Vol.102 (1), p.85-113
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_miscellaneous_1786224903
source Springer Nature - Complete Springer Journals
subjects Artificial Intelligence
Computer Science
Control
Disasters
Integers
Mathematical analysis
Mechatronics
Methodology
Natural Language Processing (NLP)
Probabilistic methods
Probability distribution
Probability theory
Robotics
Simulation and Modeling
Vectors (mathematics)
title Probabilistic archetypal analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A13%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20archetypal%20analysis&rft.jtitle=Machine%20learning&rft.au=Seth,%20Sohan&rft.date=2016-01-01&rft.volume=102&rft.issue=1&rft.spage=85&rft.epage=113&rft.pages=85-113&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-015-5498-8&rft_dat=%3Cproquest_cross%3E1786224903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1752319949&rft_id=info:pmid/&rfr_iscdi=true