Generalization bounds for metric and similarity learning
Recently, metric learning and similarity learning have attracted a large amount of interest. Many models and optimization algorithms have been proposed. However, there is relatively little work on the generalization analysis of such methods. In this paper, we derive novel generalization bounds of me...
Gespeichert in:
Veröffentlicht in: | Machine learning 2016-01, Vol.102 (1), p.115-132 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | 1 |
container_start_page | 115 |
container_title | Machine learning |
container_volume | 102 |
creator | Cao, Qiong Guo, Zheng-Chu Ying, Yiming |
description | Recently, metric learning and similarity learning have attracted a large amount of interest. Many models and optimization algorithms have been proposed. However, there is relatively little work on the generalization analysis of such methods. In this paper, we derive novel generalization bounds of metric and similarity learning. In particular, we first show that the generalization analysis reduces to the estimation of the Rademacher average over “sums-of-i.i.d.” sample-blocks related to the specific matrix norm. Then, we derive generalization bounds for metric/similarity learning with different matrix-norm regularizers by estimating their specific Rademacher complexities. Our analysis indicates that sparse metric/similarity learning with
L
1
-norm regularization could lead to significantly better bounds than those with Frobenius-norm regularization. Our novel generalization analysis develops and refines the techniques of U-statistics and Rademacher complexity analysis. |
doi_str_mv | 10.1007/s10994-015-5499-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786224771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3907362891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-7d49275f4d83b8d61a61119c28c7ba2de443f58978b665e30a06f66f3e31e4c03</originalsourceid><addsrcrecordid>eNp1kEtLxDAURoMoOD5-gLuCGzfRe_PuUgYdhQE3ug5pmw4Z2nRM2sX46-0wLkRwdTfnO1wOITcI9wigHzJCWQoKKKkUZUn1CVmg1JyCVPKULMAYSRUyeU4uct4CAFNGLYhZ-eiT68KXG8MQi2qYYpOLdkhF78cU6sLFpsihD51LYdwXnXcphri5Imet67K__rmX5OP56X35Qtdvq9fl45rWkpmR6kaUTMtWNIZXplHoFCKWNTO1rhxrvBC8labUplJKeg4OVKtUyz1HL2rgl-Tu6N2l4XPyebR9yLXvOhf9MGWL2ijGhNY4o7d_0O0wpTh_N1OScQaIByEeqToNOSff2l0KvUt7i2APLe2xpZ1b2kNLq-cNO27yzMaNT7_M_46-ARq3dUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752320110</pqid></control><display><type>article</type><title>Generalization bounds for metric and similarity learning</title><source>SpringerNature Journals</source><creator>Cao, Qiong ; Guo, Zheng-Chu ; Ying, Yiming</creator><creatorcontrib>Cao, Qiong ; Guo, Zheng-Chu ; Ying, Yiming</creatorcontrib><description>Recently, metric learning and similarity learning have attracted a large amount of interest. Many models and optimization algorithms have been proposed. However, there is relatively little work on the generalization analysis of such methods. In this paper, we derive novel generalization bounds of metric and similarity learning. In particular, we first show that the generalization analysis reduces to the estimation of the Rademacher average over “sums-of-i.i.d.” sample-blocks related to the specific matrix norm. Then, we derive generalization bounds for metric/similarity learning with different matrix-norm regularizers by estimating their specific Rademacher complexities. Our analysis indicates that sparse metric/similarity learning with
L
1
-norm regularization could lead to significantly better bounds than those with Frobenius-norm regularization. Our novel generalization analysis develops and refines the techniques of U-statistics and Rademacher complexity analysis.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-015-5499-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Complexity ; Computer Science ; Control ; Learning ; Mechatronics ; Natural Language Processing (NLP) ; Norms ; Optimization ; Regularization ; Robotics ; Similarity ; Simulation and Modeling ; Texts</subject><ispartof>Machine learning, 2016-01, Vol.102 (1), p.115-132</ispartof><rights>The Author(s) 2015</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-7d49275f4d83b8d61a61119c28c7ba2de443f58978b665e30a06f66f3e31e4c03</citedby><cites>FETCH-LOGICAL-c528t-7d49275f4d83b8d61a61119c28c7ba2de443f58978b665e30a06f66f3e31e4c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-015-5499-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-015-5499-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Cao, Qiong</creatorcontrib><creatorcontrib>Guo, Zheng-Chu</creatorcontrib><creatorcontrib>Ying, Yiming</creatorcontrib><title>Generalization bounds for metric and similarity learning</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Recently, metric learning and similarity learning have attracted a large amount of interest. Many models and optimization algorithms have been proposed. However, there is relatively little work on the generalization analysis of such methods. In this paper, we derive novel generalization bounds of metric and similarity learning. In particular, we first show that the generalization analysis reduces to the estimation of the Rademacher average over “sums-of-i.i.d.” sample-blocks related to the specific matrix norm. Then, we derive generalization bounds for metric/similarity learning with different matrix-norm regularizers by estimating their specific Rademacher complexities. Our analysis indicates that sparse metric/similarity learning with
L
1
-norm regularization could lead to significantly better bounds than those with Frobenius-norm regularization. Our novel generalization analysis develops and refines the techniques of U-statistics and Rademacher complexity analysis.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Control</subject><subject>Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Norms</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Robotics</subject><subject>Similarity</subject><subject>Simulation and Modeling</subject><subject>Texts</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAURoMoOD5-gLuCGzfRe_PuUgYdhQE3ug5pmw4Z2nRM2sX46-0wLkRwdTfnO1wOITcI9wigHzJCWQoKKKkUZUn1CVmg1JyCVPKULMAYSRUyeU4uct4CAFNGLYhZ-eiT68KXG8MQi2qYYpOLdkhF78cU6sLFpsihD51LYdwXnXcphri5Imet67K__rmX5OP56X35Qtdvq9fl45rWkpmR6kaUTMtWNIZXplHoFCKWNTO1rhxrvBC8labUplJKeg4OVKtUyz1HL2rgl-Tu6N2l4XPyebR9yLXvOhf9MGWL2ijGhNY4o7d_0O0wpTh_N1OScQaIByEeqToNOSff2l0KvUt7i2APLe2xpZ1b2kNLq-cNO27yzMaNT7_M_46-ARq3dUk</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Cao, Qiong</creator><creator>Guo, Zheng-Chu</creator><creator>Ying, Yiming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>Generalization bounds for metric and similarity learning</title><author>Cao, Qiong ; Guo, Zheng-Chu ; Ying, Yiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-7d49275f4d83b8d61a61119c28c7ba2de443f58978b665e30a06f66f3e31e4c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Control</topic><topic>Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Norms</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Robotics</topic><topic>Similarity</topic><topic>Simulation and Modeling</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Qiong</creatorcontrib><creatorcontrib>Guo, Zheng-Chu</creatorcontrib><creatorcontrib>Ying, Yiming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Qiong</au><au>Guo, Zheng-Chu</au><au>Ying, Yiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization bounds for metric and similarity learning</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>102</volume><issue>1</issue><spage>115</spage><epage>132</epage><pages>115-132</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Recently, metric learning and similarity learning have attracted a large amount of interest. Many models and optimization algorithms have been proposed. However, there is relatively little work on the generalization analysis of such methods. In this paper, we derive novel generalization bounds of metric and similarity learning. In particular, we first show that the generalization analysis reduces to the estimation of the Rademacher average over “sums-of-i.i.d.” sample-blocks related to the specific matrix norm. Then, we derive generalization bounds for metric/similarity learning with different matrix-norm regularizers by estimating their specific Rademacher complexities. Our analysis indicates that sparse metric/similarity learning with
L
1
-norm regularization could lead to significantly better bounds than those with Frobenius-norm regularization. Our novel generalization analysis develops and refines the techniques of U-statistics and Rademacher complexity analysis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-015-5499-7</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6125 |
ispartof | Machine learning, 2016-01, Vol.102 (1), p.115-132 |
issn | 0885-6125 1573-0565 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786224771 |
source | SpringerNature Journals |
subjects | Algorithms Artificial Intelligence Complexity Computer Science Control Learning Mechatronics Natural Language Processing (NLP) Norms Optimization Regularization Robotics Similarity Simulation and Modeling Texts |
title | Generalization bounds for metric and similarity learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20bounds%20for%20metric%20and%20similarity%20learning&rft.jtitle=Machine%20learning&rft.au=Cao,%20Qiong&rft.date=2016-01-01&rft.volume=102&rft.issue=1&rft.spage=115&rft.epage=132&rft.pages=115-132&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-015-5499-7&rft_dat=%3Cproquest_cross%3E3907362891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1752320110&rft_id=info:pmid/&rfr_iscdi=true |