Generalization bounds for metric and similarity learning

Recently, metric learning and similarity learning have attracted a large amount of interest. Many models and optimization algorithms have been proposed. However, there is relatively little work on the generalization analysis of such methods. In this paper, we derive novel generalization bounds of me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2016-01, Vol.102 (1), p.115-132
Hauptverfasser: Cao, Qiong, Guo, Zheng-Chu, Ying, Yiming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue 1
container_start_page 115
container_title Machine learning
container_volume 102
creator Cao, Qiong
Guo, Zheng-Chu
Ying, Yiming
description Recently, metric learning and similarity learning have attracted a large amount of interest. Many models and optimization algorithms have been proposed. However, there is relatively little work on the generalization analysis of such methods. In this paper, we derive novel generalization bounds of metric and similarity learning. In particular, we first show that the generalization analysis reduces to the estimation of the Rademacher average over “sums-of-i.i.d.” sample-blocks related to the specific matrix norm. Then, we derive generalization bounds for metric/similarity learning with different matrix-norm regularizers by estimating their specific Rademacher complexities. Our analysis indicates that sparse metric/similarity learning with L 1 -norm regularization could lead to significantly better bounds than those with Frobenius-norm regularization. Our novel generalization analysis develops and refines the techniques of U-statistics and Rademacher complexity analysis.
doi_str_mv 10.1007/s10994-015-5499-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786224771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3907362891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-7d49275f4d83b8d61a61119c28c7ba2de443f58978b665e30a06f66f3e31e4c03</originalsourceid><addsrcrecordid>eNp1kEtLxDAURoMoOD5-gLuCGzfRe_PuUgYdhQE3ug5pmw4Z2nRM2sX46-0wLkRwdTfnO1wOITcI9wigHzJCWQoKKKkUZUn1CVmg1JyCVPKULMAYSRUyeU4uct4CAFNGLYhZ-eiT68KXG8MQi2qYYpOLdkhF78cU6sLFpsihD51LYdwXnXcphri5Imet67K__rmX5OP56X35Qtdvq9fl45rWkpmR6kaUTMtWNIZXplHoFCKWNTO1rhxrvBC8labUplJKeg4OVKtUyz1HL2rgl-Tu6N2l4XPyebR9yLXvOhf9MGWL2ijGhNY4o7d_0O0wpTh_N1OScQaIByEeqToNOSff2l0KvUt7i2APLe2xpZ1b2kNLq-cNO27yzMaNT7_M_46-ARq3dUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1752320110</pqid></control><display><type>article</type><title>Generalization bounds for metric and similarity learning</title><source>SpringerNature Journals</source><creator>Cao, Qiong ; Guo, Zheng-Chu ; Ying, Yiming</creator><creatorcontrib>Cao, Qiong ; Guo, Zheng-Chu ; Ying, Yiming</creatorcontrib><description>Recently, metric learning and similarity learning have attracted a large amount of interest. Many models and optimization algorithms have been proposed. However, there is relatively little work on the generalization analysis of such methods. In this paper, we derive novel generalization bounds of metric and similarity learning. In particular, we first show that the generalization analysis reduces to the estimation of the Rademacher average over “sums-of-i.i.d.” sample-blocks related to the specific matrix norm. Then, we derive generalization bounds for metric/similarity learning with different matrix-norm regularizers by estimating their specific Rademacher complexities. Our analysis indicates that sparse metric/similarity learning with L 1 -norm regularization could lead to significantly better bounds than those with Frobenius-norm regularization. Our novel generalization analysis develops and refines the techniques of U-statistics and Rademacher complexity analysis.</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-015-5499-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Complexity ; Computer Science ; Control ; Learning ; Mechatronics ; Natural Language Processing (NLP) ; Norms ; Optimization ; Regularization ; Robotics ; Similarity ; Simulation and Modeling ; Texts</subject><ispartof>Machine learning, 2016-01, Vol.102 (1), p.115-132</ispartof><rights>The Author(s) 2015</rights><rights>The Author(s) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-7d49275f4d83b8d61a61119c28c7ba2de443f58978b665e30a06f66f3e31e4c03</citedby><cites>FETCH-LOGICAL-c528t-7d49275f4d83b8d61a61119c28c7ba2de443f58978b665e30a06f66f3e31e4c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10994-015-5499-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10994-015-5499-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Cao, Qiong</creatorcontrib><creatorcontrib>Guo, Zheng-Chu</creatorcontrib><creatorcontrib>Ying, Yiming</creatorcontrib><title>Generalization bounds for metric and similarity learning</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Recently, metric learning and similarity learning have attracted a large amount of interest. Many models and optimization algorithms have been proposed. However, there is relatively little work on the generalization analysis of such methods. In this paper, we derive novel generalization bounds of metric and similarity learning. In particular, we first show that the generalization analysis reduces to the estimation of the Rademacher average over “sums-of-i.i.d.” sample-blocks related to the specific matrix norm. Then, we derive generalization bounds for metric/similarity learning with different matrix-norm regularizers by estimating their specific Rademacher complexities. Our analysis indicates that sparse metric/similarity learning with L 1 -norm regularization could lead to significantly better bounds than those with Frobenius-norm regularization. Our novel generalization analysis develops and refines the techniques of U-statistics and Rademacher complexity analysis.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Control</subject><subject>Learning</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Norms</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Robotics</subject><subject>Similarity</subject><subject>Simulation and Modeling</subject><subject>Texts</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAURoMoOD5-gLuCGzfRe_PuUgYdhQE3ug5pmw4Z2nRM2sX46-0wLkRwdTfnO1wOITcI9wigHzJCWQoKKKkUZUn1CVmg1JyCVPKULMAYSRUyeU4uct4CAFNGLYhZ-eiT68KXG8MQi2qYYpOLdkhF78cU6sLFpsihD51LYdwXnXcphri5Imet67K__rmX5OP56X35Qtdvq9fl45rWkpmR6kaUTMtWNIZXplHoFCKWNTO1rhxrvBC8labUplJKeg4OVKtUyz1HL2rgl-Tu6N2l4XPyebR9yLXvOhf9MGWL2ijGhNY4o7d_0O0wpTh_N1OScQaIByEeqToNOSff2l0KvUt7i2APLe2xpZ1b2kNLq-cNO27yzMaNT7_M_46-ARq3dUk</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Cao, Qiong</creator><creator>Guo, Zheng-Chu</creator><creator>Ying, Yiming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>Generalization bounds for metric and similarity learning</title><author>Cao, Qiong ; Guo, Zheng-Chu ; Ying, Yiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-7d49275f4d83b8d61a61119c28c7ba2de443f58978b665e30a06f66f3e31e4c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Control</topic><topic>Learning</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Norms</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Robotics</topic><topic>Similarity</topic><topic>Simulation and Modeling</topic><topic>Texts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Qiong</creatorcontrib><creatorcontrib>Guo, Zheng-Chu</creatorcontrib><creatorcontrib>Ying, Yiming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Qiong</au><au>Guo, Zheng-Chu</au><au>Ying, Yiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization bounds for metric and similarity learning</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>102</volume><issue>1</issue><spage>115</spage><epage>132</epage><pages>115-132</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Recently, metric learning and similarity learning have attracted a large amount of interest. Many models and optimization algorithms have been proposed. However, there is relatively little work on the generalization analysis of such methods. In this paper, we derive novel generalization bounds of metric and similarity learning. In particular, we first show that the generalization analysis reduces to the estimation of the Rademacher average over “sums-of-i.i.d.” sample-blocks related to the specific matrix norm. Then, we derive generalization bounds for metric/similarity learning with different matrix-norm regularizers by estimating their specific Rademacher complexities. Our analysis indicates that sparse metric/similarity learning with L 1 -norm regularization could lead to significantly better bounds than those with Frobenius-norm regularization. Our novel generalization analysis develops and refines the techniques of U-statistics and Rademacher complexity analysis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-015-5499-7</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2016-01, Vol.102 (1), p.115-132
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_miscellaneous_1786224771
source SpringerNature Journals
subjects Algorithms
Artificial Intelligence
Complexity
Computer Science
Control
Learning
Mechatronics
Natural Language Processing (NLP)
Norms
Optimization
Regularization
Robotics
Similarity
Simulation and Modeling
Texts
title Generalization bounds for metric and similarity learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A08%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20bounds%20for%20metric%20and%20similarity%20learning&rft.jtitle=Machine%20learning&rft.au=Cao,%20Qiong&rft.date=2016-01-01&rft.volume=102&rft.issue=1&rft.spage=115&rft.epage=132&rft.pages=115-132&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-015-5499-7&rft_dat=%3Cproquest_cross%3E3907362891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1752320110&rft_id=info:pmid/&rfr_iscdi=true