Nonlinear entanglement and its application to generating cat States

The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-03, Vol.114 (10), p.100403-100403, Article 100403
Hauptverfasser: Shen, Y, Assad, S M, Grosse, N B, Li, X Y, Reid, M D, Lam, P K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 100403
container_issue 10
container_start_page 100403
container_title Physical review letters
container_volume 114
creator Shen, Y
Assad, S M
Grosse, N B
Li, X Y
Reid, M D
Lam, P K
description The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.
doi_str_mv 10.1103/PhysRevLett.114.100403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786221906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1667961014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-f183718134587003abe64288068266a0e844582203bd6f0f02dc4830ceb463103</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwC1WWbFJmbMdxlqjiJVWAeKwjJ5mUoMQJsYvUv8eoBbFjNTNXd16HsTnCAhHExePb1j3R54q8D4JcIIAEccCmCGkWp0E6ZFMAgXEGkE7YiXPvAIBc6WM24YnGJEOYsuV9b9vGkhkjst7YdUtdSCJjq6jxLjLD0Dal8U1vI99Ha7I0hsquoyBGz954cqfsqDato7N9nLHX66uX5W28eri5W16u4lLKxMc1apGiRiETnYbTTEFKcq1Baa6UAdLBpjkHUVSqhhp4VUotoKRCKhGenrHz3dxh7D825HzeNa6ktjWW-o3LMdWKc8xA_W9VKs0UAspgVTtrOfbOjVTnw9h0ZtzmCPk36_wP6yDIfMc6NM73OzZFR9Vv2w9c8QUekHsu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1667961014</pqid></control><display><type>article</type><title>Nonlinear entanglement and its application to generating cat States</title><source>American Physical Society</source><creator>Shen, Y ; Assad, S M ; Grosse, N B ; Li, X Y ; Reid, M D ; Lam, P K</creator><creatorcontrib>Shen, Y ; Assad, S M ; Grosse, N B ; Li, X Y ; Reid, M D ; Lam, P K</creatorcontrib><description>The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.114.100403</identifier><identifier>PMID: 25815910</identifier><language>eng</language><publisher>United States</publisher><subject>Conjugates ; Correlation ; Entanglement ; Joining ; Nonlinearity ; Oscillators ; Quantum mechanics ; Uncertainty</subject><ispartof>Physical review letters, 2015-03, Vol.114 (10), p.100403-100403, Article 100403</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-f183718134587003abe64288068266a0e844582203bd6f0f02dc4830ceb463103</citedby><cites>FETCH-LOGICAL-c445t-f183718134587003abe64288068266a0e844582203bd6f0f02dc4830ceb463103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25815910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Y</creatorcontrib><creatorcontrib>Assad, S M</creatorcontrib><creatorcontrib>Grosse, N B</creatorcontrib><creatorcontrib>Li, X Y</creatorcontrib><creatorcontrib>Reid, M D</creatorcontrib><creatorcontrib>Lam, P K</creatorcontrib><title>Nonlinear entanglement and its application to generating cat States</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.</description><subject>Conjugates</subject><subject>Correlation</subject><subject>Entanglement</subject><subject>Joining</subject><subject>Nonlinearity</subject><subject>Oscillators</subject><subject>Quantum mechanics</subject><subject>Uncertainty</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqXwC1WWbFJmbMdxlqjiJVWAeKwjJ5mUoMQJsYvUv8eoBbFjNTNXd16HsTnCAhHExePb1j3R54q8D4JcIIAEccCmCGkWp0E6ZFMAgXEGkE7YiXPvAIBc6WM24YnGJEOYsuV9b9vGkhkjst7YdUtdSCJjq6jxLjLD0Dal8U1vI99Ha7I0hsquoyBGz954cqfsqDato7N9nLHX66uX5W28eri5W16u4lLKxMc1apGiRiETnYbTTEFKcq1Baa6UAdLBpjkHUVSqhhp4VUotoKRCKhGenrHz3dxh7D825HzeNa6ktjWW-o3LMdWKc8xA_W9VKs0UAspgVTtrOfbOjVTnw9h0ZtzmCPk36_wP6yDIfMc6NM73OzZFR9Vv2w9c8QUekHsu</recordid><startdate>20150313</startdate><enddate>20150313</enddate><creator>Shen, Y</creator><creator>Assad, S M</creator><creator>Grosse, N B</creator><creator>Li, X Y</creator><creator>Reid, M D</creator><creator>Lam, P K</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150313</creationdate><title>Nonlinear entanglement and its application to generating cat States</title><author>Shen, Y ; Assad, S M ; Grosse, N B ; Li, X Y ; Reid, M D ; Lam, P K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-f183718134587003abe64288068266a0e844582203bd6f0f02dc4830ceb463103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Conjugates</topic><topic>Correlation</topic><topic>Entanglement</topic><topic>Joining</topic><topic>Nonlinearity</topic><topic>Oscillators</topic><topic>Quantum mechanics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Y</creatorcontrib><creatorcontrib>Assad, S M</creatorcontrib><creatorcontrib>Grosse, N B</creatorcontrib><creatorcontrib>Li, X Y</creatorcontrib><creatorcontrib>Reid, M D</creatorcontrib><creatorcontrib>Lam, P K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Y</au><au>Assad, S M</au><au>Grosse, N B</au><au>Li, X Y</au><au>Reid, M D</au><au>Lam, P K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear entanglement and its application to generating cat States</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2015-03-13</date><risdate>2015</risdate><volume>114</volume><issue>10</issue><spage>100403</spage><epage>100403</epage><pages>100403-100403</pages><artnum>100403</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.</abstract><cop>United States</cop><pmid>25815910</pmid><doi>10.1103/PhysRevLett.114.100403</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2015-03, Vol.114 (10), p.100403-100403, Article 100403
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1786221906
source American Physical Society
subjects Conjugates
Correlation
Entanglement
Joining
Nonlinearity
Oscillators
Quantum mechanics
Uncertainty
title Nonlinear entanglement and its application to generating cat States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20entanglement%20and%20its%20application%20to%20generating%20cat%20States&rft.jtitle=Physical%20review%20letters&rft.au=Shen,%20Y&rft.date=2015-03-13&rft.volume=114&rft.issue=10&rft.spage=100403&rft.epage=100403&rft.pages=100403-100403&rft.artnum=100403&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.114.100403&rft_dat=%3Cproquest_cross%3E1667961014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1667961014&rft_id=info:pmid/25815910&rfr_iscdi=true