Nonlinear entanglement and its application to generating cat States
The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugat...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2015-03, Vol.114 (10), p.100403-100403, Article 100403 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100403 |
---|---|
container_issue | 10 |
container_start_page | 100403 |
container_title | Physical review letters |
container_volume | 114 |
creator | Shen, Y Assad, S M Grosse, N B Li, X Y Reid, M D Lam, P K |
description | The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size. |
doi_str_mv | 10.1103/PhysRevLett.114.100403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786221906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1667961014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-f183718134587003abe64288068266a0e844582203bd6f0f02dc4830ceb463103</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwC1WWbFJmbMdxlqjiJVWAeKwjJ5mUoMQJsYvUv8eoBbFjNTNXd16HsTnCAhHExePb1j3R54q8D4JcIIAEccCmCGkWp0E6ZFMAgXEGkE7YiXPvAIBc6WM24YnGJEOYsuV9b9vGkhkjst7YdUtdSCJjq6jxLjLD0Dal8U1vI99Ha7I0hsquoyBGz954cqfsqDato7N9nLHX66uX5W28eri5W16u4lLKxMc1apGiRiETnYbTTEFKcq1Baa6UAdLBpjkHUVSqhhp4VUotoKRCKhGenrHz3dxh7D825HzeNa6ktjWW-o3LMdWKc8xA_W9VKs0UAspgVTtrOfbOjVTnw9h0ZtzmCPk36_wP6yDIfMc6NM73OzZFR9Vv2w9c8QUekHsu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1667961014</pqid></control><display><type>article</type><title>Nonlinear entanglement and its application to generating cat States</title><source>American Physical Society</source><creator>Shen, Y ; Assad, S M ; Grosse, N B ; Li, X Y ; Reid, M D ; Lam, P K</creator><creatorcontrib>Shen, Y ; Assad, S M ; Grosse, N B ; Li, X Y ; Reid, M D ; Lam, P K</creatorcontrib><description>The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.114.100403</identifier><identifier>PMID: 25815910</identifier><language>eng</language><publisher>United States</publisher><subject>Conjugates ; Correlation ; Entanglement ; Joining ; Nonlinearity ; Oscillators ; Quantum mechanics ; Uncertainty</subject><ispartof>Physical review letters, 2015-03, Vol.114 (10), p.100403-100403, Article 100403</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-f183718134587003abe64288068266a0e844582203bd6f0f02dc4830ceb463103</citedby><cites>FETCH-LOGICAL-c445t-f183718134587003abe64288068266a0e844582203bd6f0f02dc4830ceb463103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25815910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Y</creatorcontrib><creatorcontrib>Assad, S M</creatorcontrib><creatorcontrib>Grosse, N B</creatorcontrib><creatorcontrib>Li, X Y</creatorcontrib><creatorcontrib>Reid, M D</creatorcontrib><creatorcontrib>Lam, P K</creatorcontrib><title>Nonlinear entanglement and its application to generating cat States</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.</description><subject>Conjugates</subject><subject>Correlation</subject><subject>Entanglement</subject><subject>Joining</subject><subject>Nonlinearity</subject><subject>Oscillators</subject><subject>Quantum mechanics</subject><subject>Uncertainty</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqXwC1WWbFJmbMdxlqjiJVWAeKwjJ5mUoMQJsYvUv8eoBbFjNTNXd16HsTnCAhHExePb1j3R54q8D4JcIIAEccCmCGkWp0E6ZFMAgXEGkE7YiXPvAIBc6WM24YnGJEOYsuV9b9vGkhkjst7YdUtdSCJjq6jxLjLD0Dal8U1vI99Ha7I0hsquoyBGz954cqfsqDato7N9nLHX66uX5W28eri5W16u4lLKxMc1apGiRiETnYbTTEFKcq1Baa6UAdLBpjkHUVSqhhp4VUotoKRCKhGenrHz3dxh7D825HzeNa6ktjWW-o3LMdWKc8xA_W9VKs0UAspgVTtrOfbOjVTnw9h0ZtzmCPk36_wP6yDIfMc6NM73OzZFR9Vv2w9c8QUekHsu</recordid><startdate>20150313</startdate><enddate>20150313</enddate><creator>Shen, Y</creator><creator>Assad, S M</creator><creator>Grosse, N B</creator><creator>Li, X Y</creator><creator>Reid, M D</creator><creator>Lam, P K</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150313</creationdate><title>Nonlinear entanglement and its application to generating cat States</title><author>Shen, Y ; Assad, S M ; Grosse, N B ; Li, X Y ; Reid, M D ; Lam, P K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-f183718134587003abe64288068266a0e844582203bd6f0f02dc4830ceb463103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Conjugates</topic><topic>Correlation</topic><topic>Entanglement</topic><topic>Joining</topic><topic>Nonlinearity</topic><topic>Oscillators</topic><topic>Quantum mechanics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Y</creatorcontrib><creatorcontrib>Assad, S M</creatorcontrib><creatorcontrib>Grosse, N B</creatorcontrib><creatorcontrib>Li, X Y</creatorcontrib><creatorcontrib>Reid, M D</creatorcontrib><creatorcontrib>Lam, P K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Y</au><au>Assad, S M</au><au>Grosse, N B</au><au>Li, X Y</au><au>Reid, M D</au><au>Lam, P K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear entanglement and its application to generating cat States</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2015-03-13</date><risdate>2015</risdate><volume>114</volume><issue>10</issue><spage>100403</spage><epage>100403</epage><pages>100403-100403</pages><artnum>100403</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.</abstract><cop>United States</cop><pmid>25815910</pmid><doi>10.1103/PhysRevLett.114.100403</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2015-03, Vol.114 (10), p.100403-100403, Article 100403 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786221906 |
source | American Physical Society |
subjects | Conjugates Correlation Entanglement Joining Nonlinearity Oscillators Quantum mechanics Uncertainty |
title | Nonlinear entanglement and its application to generating cat States |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20entanglement%20and%20its%20application%20to%20generating%20cat%20States&rft.jtitle=Physical%20review%20letters&rft.au=Shen,%20Y&rft.date=2015-03-13&rft.volume=114&rft.issue=10&rft.spage=100403&rft.epage=100403&rft.pages=100403-100403&rft.artnum=100403&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.114.100403&rft_dat=%3Cproquest_cross%3E1667961014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1667961014&rft_id=info:pmid/25815910&rfr_iscdi=true |