Why does graphene behave as a weakly interacting system?

We address the puzzling weak-coupling perturbative behavior of graphene interaction effects as manifested experimentally, in spite of the effective fine structure constant being large, by calculating the effect of Coulomb interactions on the quasiparticle properties to next-to-leading order in the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-09, Vol.113 (10), p.105502
Hauptverfasser: Hofmann, Johannes, Barnes, Edwin, Das Sarma, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 105502
container_title Physical review letters
container_volume 113
creator Hofmann, Johannes
Barnes, Edwin
Das Sarma, S
description We address the puzzling weak-coupling perturbative behavior of graphene interaction effects as manifested experimentally, in spite of the effective fine structure constant being large, by calculating the effect of Coulomb interactions on the quasiparticle properties to next-to-leading order in the random phase approximation (RPA). The focus of our work is graphene suspended in vacuum, where electron-electron interactions are strong and the system is manifestly in a nonperturbative regime. We report results for the quasiparticle residue and the Fermi velocity renormalization at low carrier density. The smallness of the next-to-leading order corrections that we obtain demonstrates that the RPA theory converges rapidly and thus, in contrast to the usual perturbative expansion in the bare coupling constant, constitutes a quantitatively predictive theory of graphene many-body physics for any coupling strength.
doi_str_mv 10.1103/PhysRevLett.113.105502
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786221903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786221903</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-92f82cf9ad40dbb9e6a4d3fcbc4b32e1c1efc896463c93f4fd1c969ae1e2e8663</originalsourceid><addsrcrecordid>eNo1j11LwzAUhoMobk7_wsilN53nJF2aXImIXzBQRPGypOnJWm272mST_nsHzqsHXh5eeBibIywQQV69VGN4pd2KYtwPcoGwXII4YlOEzCQZYnrMpgASEwOQTdhZCJ8AgELpUzYRSyG1VHrK9Ec18nJDga8H21fUES-osjviNnDLf8h-NSOvu0iDdbHu1jyMIVJ7fc5OvG0CXRw4Y-_3d2-3j8nq-eHp9maV9AIxJkZ4LZw3tkyhLApDyqal9K5waSEFoUPyThuVKumM9Kkv0RllLCEJ0krJGbv8--2HzfeWQszbOjhqGtvRZhtyzLQSAg3IvTo_qNuipTLvh7q1w5j_18pfGr1Z1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786221903</pqid></control><display><type>article</type><title>Why does graphene behave as a weakly interacting system?</title><source>American Physical Society Journals</source><creator>Hofmann, Johannes ; Barnes, Edwin ; Das Sarma, S</creator><creatorcontrib>Hofmann, Johannes ; Barnes, Edwin ; Das Sarma, S</creatorcontrib><description>We address the puzzling weak-coupling perturbative behavior of graphene interaction effects as manifested experimentally, in spite of the effective fine structure constant being large, by calculating the effect of Coulomb interactions on the quasiparticle properties to next-to-leading order in the random phase approximation (RPA). The focus of our work is graphene suspended in vacuum, where electron-electron interactions are strong and the system is manifestly in a nonperturbative regime. We report results for the quasiparticle residue and the Fermi velocity renormalization at low carrier density. The smallness of the next-to-leading order corrections that we obtain demonstrates that the RPA theory converges rapidly and thus, in contrast to the usual perturbative expansion in the bare coupling constant, constitutes a quantitatively predictive theory of graphene many-body physics for any coupling strength.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.113.105502</identifier><identifier>PMID: 25238368</identifier><language>eng</language><publisher>United States</publisher><subject>Approximation ; Constants ; Coulomb friction ; Fine structure ; Graphene ; Joining ; Mathematical analysis ; Residues</subject><ispartof>Physical review letters, 2014-09, Vol.113 (10), p.105502</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25238368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hofmann, Johannes</creatorcontrib><creatorcontrib>Barnes, Edwin</creatorcontrib><creatorcontrib>Das Sarma, S</creatorcontrib><title>Why does graphene behave as a weakly interacting system?</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We address the puzzling weak-coupling perturbative behavior of graphene interaction effects as manifested experimentally, in spite of the effective fine structure constant being large, by calculating the effect of Coulomb interactions on the quasiparticle properties to next-to-leading order in the random phase approximation (RPA). The focus of our work is graphene suspended in vacuum, where electron-electron interactions are strong and the system is manifestly in a nonperturbative regime. We report results for the quasiparticle residue and the Fermi velocity renormalization at low carrier density. The smallness of the next-to-leading order corrections that we obtain demonstrates that the RPA theory converges rapidly and thus, in contrast to the usual perturbative expansion in the bare coupling constant, constitutes a quantitatively predictive theory of graphene many-body physics for any coupling strength.</description><subject>Approximation</subject><subject>Constants</subject><subject>Coulomb friction</subject><subject>Fine structure</subject><subject>Graphene</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Residues</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1j11LwzAUhoMobk7_wsilN53nJF2aXImIXzBQRPGypOnJWm272mST_nsHzqsHXh5eeBibIywQQV69VGN4pd2KYtwPcoGwXII4YlOEzCQZYnrMpgASEwOQTdhZCJ8AgELpUzYRSyG1VHrK9Ec18nJDga8H21fUES-osjviNnDLf8h-NSOvu0iDdbHu1jyMIVJ7fc5OvG0CXRw4Y-_3d2-3j8nq-eHp9maV9AIxJkZ4LZw3tkyhLApDyqal9K5waSEFoUPyThuVKumM9Kkv0RllLCEJ0krJGbv8--2HzfeWQszbOjhqGtvRZhtyzLQSAg3IvTo_qNuipTLvh7q1w5j_18pfGr1Z1Q</recordid><startdate>20140905</startdate><enddate>20140905</enddate><creator>Hofmann, Johannes</creator><creator>Barnes, Edwin</creator><creator>Das Sarma, S</creator><scope>NPM</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140905</creationdate><title>Why does graphene behave as a weakly interacting system?</title><author>Hofmann, Johannes ; Barnes, Edwin ; Das Sarma, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-92f82cf9ad40dbb9e6a4d3fcbc4b32e1c1efc896463c93f4fd1c969ae1e2e8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Constants</topic><topic>Coulomb friction</topic><topic>Fine structure</topic><topic>Graphene</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Residues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hofmann, Johannes</creatorcontrib><creatorcontrib>Barnes, Edwin</creatorcontrib><creatorcontrib>Das Sarma, S</creatorcontrib><collection>PubMed</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofmann, Johannes</au><au>Barnes, Edwin</au><au>Das Sarma, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why does graphene behave as a weakly interacting system?</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2014-09-05</date><risdate>2014</risdate><volume>113</volume><issue>10</issue><spage>105502</spage><pages>105502-</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We address the puzzling weak-coupling perturbative behavior of graphene interaction effects as manifested experimentally, in spite of the effective fine structure constant being large, by calculating the effect of Coulomb interactions on the quasiparticle properties to next-to-leading order in the random phase approximation (RPA). The focus of our work is graphene suspended in vacuum, where electron-electron interactions are strong and the system is manifestly in a nonperturbative regime. We report results for the quasiparticle residue and the Fermi velocity renormalization at low carrier density. The smallness of the next-to-leading order corrections that we obtain demonstrates that the RPA theory converges rapidly and thus, in contrast to the usual perturbative expansion in the bare coupling constant, constitutes a quantitatively predictive theory of graphene many-body physics for any coupling strength.</abstract><cop>United States</cop><pmid>25238368</pmid><doi>10.1103/PhysRevLett.113.105502</doi></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2014-09, Vol.113 (10), p.105502
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1786221903
source American Physical Society Journals
subjects Approximation
Constants
Coulomb friction
Fine structure
Graphene
Joining
Mathematical analysis
Residues
title Why does graphene behave as a weakly interacting system?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20does%20graphene%20behave%20as%20a%20weakly%20interacting%20system?&rft.jtitle=Physical%20review%20letters&rft.au=Hofmann,%20Johannes&rft.date=2014-09-05&rft.volume=113&rft.issue=10&rft.spage=105502&rft.pages=105502-&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.113.105502&rft_dat=%3Cproquest_pubme%3E1786221903%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786221903&rft_id=info:pmid/25238368&rfr_iscdi=true