Why does graphene behave as a weakly interacting system?
We address the puzzling weak-coupling perturbative behavior of graphene interaction effects as manifested experimentally, in spite of the effective fine structure constant being large, by calculating the effect of Coulomb interactions on the quasiparticle properties to next-to-leading order in the r...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-09, Vol.113 (10), p.105502 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 105502 |
container_title | Physical review letters |
container_volume | 113 |
creator | Hofmann, Johannes Barnes, Edwin Das Sarma, S |
description | We address the puzzling weak-coupling perturbative behavior of graphene interaction effects as manifested experimentally, in spite of the effective fine structure constant being large, by calculating the effect of Coulomb interactions on the quasiparticle properties to next-to-leading order in the random phase approximation (RPA). The focus of our work is graphene suspended in vacuum, where electron-electron interactions are strong and the system is manifestly in a nonperturbative regime. We report results for the quasiparticle residue and the Fermi velocity renormalization at low carrier density. The smallness of the next-to-leading order corrections that we obtain demonstrates that the RPA theory converges rapidly and thus, in contrast to the usual perturbative expansion in the bare coupling constant, constitutes a quantitatively predictive theory of graphene many-body physics for any coupling strength. |
doi_str_mv | 10.1103/PhysRevLett.113.105502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786221903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786221903</sourcerecordid><originalsourceid>FETCH-LOGICAL-p211t-92f82cf9ad40dbb9e6a4d3fcbc4b32e1c1efc896463c93f4fd1c969ae1e2e8663</originalsourceid><addsrcrecordid>eNo1j11LwzAUhoMobk7_wsilN53nJF2aXImIXzBQRPGypOnJWm272mST_nsHzqsHXh5eeBibIywQQV69VGN4pd2KYtwPcoGwXII4YlOEzCQZYnrMpgASEwOQTdhZCJ8AgELpUzYRSyG1VHrK9Ec18nJDga8H21fUES-osjviNnDLf8h-NSOvu0iDdbHu1jyMIVJ7fc5OvG0CXRw4Y-_3d2-3j8nq-eHp9maV9AIxJkZ4LZw3tkyhLApDyqal9K5waSEFoUPyThuVKumM9Kkv0RllLCEJ0krJGbv8--2HzfeWQszbOjhqGtvRZhtyzLQSAg3IvTo_qNuipTLvh7q1w5j_18pfGr1Z1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786221903</pqid></control><display><type>article</type><title>Why does graphene behave as a weakly interacting system?</title><source>American Physical Society Journals</source><creator>Hofmann, Johannes ; Barnes, Edwin ; Das Sarma, S</creator><creatorcontrib>Hofmann, Johannes ; Barnes, Edwin ; Das Sarma, S</creatorcontrib><description>We address the puzzling weak-coupling perturbative behavior of graphene interaction effects as manifested experimentally, in spite of the effective fine structure constant being large, by calculating the effect of Coulomb interactions on the quasiparticle properties to next-to-leading order in the random phase approximation (RPA). The focus of our work is graphene suspended in vacuum, where electron-electron interactions are strong and the system is manifestly in a nonperturbative regime. We report results for the quasiparticle residue and the Fermi velocity renormalization at low carrier density. The smallness of the next-to-leading order corrections that we obtain demonstrates that the RPA theory converges rapidly and thus, in contrast to the usual perturbative expansion in the bare coupling constant, constitutes a quantitatively predictive theory of graphene many-body physics for any coupling strength.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.113.105502</identifier><identifier>PMID: 25238368</identifier><language>eng</language><publisher>United States</publisher><subject>Approximation ; Constants ; Coulomb friction ; Fine structure ; Graphene ; Joining ; Mathematical analysis ; Residues</subject><ispartof>Physical review letters, 2014-09, Vol.113 (10), p.105502</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25238368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hofmann, Johannes</creatorcontrib><creatorcontrib>Barnes, Edwin</creatorcontrib><creatorcontrib>Das Sarma, S</creatorcontrib><title>Why does graphene behave as a weakly interacting system?</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We address the puzzling weak-coupling perturbative behavior of graphene interaction effects as manifested experimentally, in spite of the effective fine structure constant being large, by calculating the effect of Coulomb interactions on the quasiparticle properties to next-to-leading order in the random phase approximation (RPA). The focus of our work is graphene suspended in vacuum, where electron-electron interactions are strong and the system is manifestly in a nonperturbative regime. We report results for the quasiparticle residue and the Fermi velocity renormalization at low carrier density. The smallness of the next-to-leading order corrections that we obtain demonstrates that the RPA theory converges rapidly and thus, in contrast to the usual perturbative expansion in the bare coupling constant, constitutes a quantitatively predictive theory of graphene many-body physics for any coupling strength.</description><subject>Approximation</subject><subject>Constants</subject><subject>Coulomb friction</subject><subject>Fine structure</subject><subject>Graphene</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Residues</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1j11LwzAUhoMobk7_wsilN53nJF2aXImIXzBQRPGypOnJWm272mST_nsHzqsHXh5eeBibIywQQV69VGN4pd2KYtwPcoGwXII4YlOEzCQZYnrMpgASEwOQTdhZCJ8AgELpUzYRSyG1VHrK9Ec18nJDga8H21fUES-osjviNnDLf8h-NSOvu0iDdbHu1jyMIVJ7fc5OvG0CXRw4Y-_3d2-3j8nq-eHp9maV9AIxJkZ4LZw3tkyhLApDyqal9K5waSEFoUPyThuVKumM9Kkv0RllLCEJ0krJGbv8--2HzfeWQszbOjhqGtvRZhtyzLQSAg3IvTo_qNuipTLvh7q1w5j_18pfGr1Z1Q</recordid><startdate>20140905</startdate><enddate>20140905</enddate><creator>Hofmann, Johannes</creator><creator>Barnes, Edwin</creator><creator>Das Sarma, S</creator><scope>NPM</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140905</creationdate><title>Why does graphene behave as a weakly interacting system?</title><author>Hofmann, Johannes ; Barnes, Edwin ; Das Sarma, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p211t-92f82cf9ad40dbb9e6a4d3fcbc4b32e1c1efc896463c93f4fd1c969ae1e2e8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Constants</topic><topic>Coulomb friction</topic><topic>Fine structure</topic><topic>Graphene</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Residues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hofmann, Johannes</creatorcontrib><creatorcontrib>Barnes, Edwin</creatorcontrib><creatorcontrib>Das Sarma, S</creatorcontrib><collection>PubMed</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hofmann, Johannes</au><au>Barnes, Edwin</au><au>Das Sarma, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Why does graphene behave as a weakly interacting system?</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2014-09-05</date><risdate>2014</risdate><volume>113</volume><issue>10</issue><spage>105502</spage><pages>105502-</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We address the puzzling weak-coupling perturbative behavior of graphene interaction effects as manifested experimentally, in spite of the effective fine structure constant being large, by calculating the effect of Coulomb interactions on the quasiparticle properties to next-to-leading order in the random phase approximation (RPA). The focus of our work is graphene suspended in vacuum, where electron-electron interactions are strong and the system is manifestly in a nonperturbative regime. We report results for the quasiparticle residue and the Fermi velocity renormalization at low carrier density. The smallness of the next-to-leading order corrections that we obtain demonstrates that the RPA theory converges rapidly and thus, in contrast to the usual perturbative expansion in the bare coupling constant, constitutes a quantitatively predictive theory of graphene many-body physics for any coupling strength.</abstract><cop>United States</cop><pmid>25238368</pmid><doi>10.1103/PhysRevLett.113.105502</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2014-09, Vol.113 (10), p.105502 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786221903 |
source | American Physical Society Journals |
subjects | Approximation Constants Coulomb friction Fine structure Graphene Joining Mathematical analysis Residues |
title | Why does graphene behave as a weakly interacting system? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A35%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Why%20does%20graphene%20behave%20as%20a%20weakly%20interacting%20system?&rft.jtitle=Physical%20review%20letters&rft.au=Hofmann,%20Johannes&rft.date=2014-09-05&rft.volume=113&rft.issue=10&rft.spage=105502&rft.pages=105502-&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.113.105502&rft_dat=%3Cproquest_pubme%3E1786221903%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786221903&rft_id=info:pmid/25238368&rfr_iscdi=true |