Defect classification using PEC respones based on power spectral density analysis combined with EMD and EEMD

The defect classification is investigated by using features-based giant-magnetoresistive pulsed eddy current (GMR-PEC) sensor. The power spectrum density of the intrinsic mode functions (IMFs) is extracted as the classification feature, considering the disadvantage of selecting a wavelet base determ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NDT & E international : independent nondestructive testing and evaluation 2016-03, Vol.78, p.37-51
Hauptverfasser: Peng, Ying, Qiu, Xuanbing, Wei, Jilin, Li, Chuanliang, Cui, Xiaochao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue
container_start_page 37
container_title NDT & E international : independent nondestructive testing and evaluation
container_volume 78
creator Peng, Ying
Qiu, Xuanbing
Wei, Jilin
Li, Chuanliang
Cui, Xiaochao
description The defect classification is investigated by using features-based giant-magnetoresistive pulsed eddy current (GMR-PEC) sensor. The power spectrum density of the intrinsic mode functions (IMFs) is extracted as the classification feature, considering the disadvantage of selecting a wavelet base determined in previous work on spectral analysis combined with wavelet-decomposition. The IMFs are derived through empirical mode decomposition (EMD) and ensemble EMD. Principal component analysis, linear discriminant analysis, and Bayesian classifier are employed for defect classification algorithm. The proposed approach is validated by experiments, and results indicate that the cracks and cavities in the surface and subsurface can be classified satisfactorily. •A new PEC feature (PSD of the IMFs) is investigated.•The PSD distributions from EMD and EEMD transform are analyzed.•The classifiers including PCA-LDA and PCA-Bayes are employed for defect classification.•The multi-resolution IMFs provide an alternative to acquire more classifying features.
doi_str_mv 10.1016/j.ndteint.2015.11.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786220871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963869515001255</els_id><sourcerecordid>1786220871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-5c2139b54efa5c7b3f0726f0367f4df9b54fd76e4bd252e13c687282a7f208263</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVooK7Tn1DQsZfd6GNXWp9KsZ004NAekrPQSqNUZq3datY1_veVce49zcD7vAPzEPKFs5ozru73dfIzxDTXgvG25rxmTN6QBe_0quJcNx_Igq2UrDq1aj-ST4h7xphopF6QYQMB3EzdYBFjiM7OcUz0iDG90V_bNc2A05gAaW8RPC3ZNJ4gU5xKLduBekgY5zO1yQ5njEjdeOhjKuwpzr_p9nlTIk-3Zbkjt8EOCJ_f55K8Pmxf1j-q3c_Hp_X3XeVkI-aqdYLLVd82EGzrdC8D00IFJpUOjQ-XJHitoOm9aAVw6VSnRSesDoJ1Qskl-Xq9O-XxzxFwNoeIDobBJhiPaLjulCio5gVtr6jLI2KGYKYcDzafDWfmYtfszbtdc7FrODfFbul9u_ag_PE3QjboIiQHPuYixvgx_ufCP7rEhi8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786220871</pqid></control><display><type>article</type><title>Defect classification using PEC respones based on power spectral density analysis combined with EMD and EEMD</title><source>Elsevier ScienceDirect Journals</source><creator>Peng, Ying ; Qiu, Xuanbing ; Wei, Jilin ; Li, Chuanliang ; Cui, Xiaochao</creator><creatorcontrib>Peng, Ying ; Qiu, Xuanbing ; Wei, Jilin ; Li, Chuanliang ; Cui, Xiaochao</creatorcontrib><description>The defect classification is investigated by using features-based giant-magnetoresistive pulsed eddy current (GMR-PEC) sensor. The power spectrum density of the intrinsic mode functions (IMFs) is extracted as the classification feature, considering the disadvantage of selecting a wavelet base determined in previous work on spectral analysis combined with wavelet-decomposition. The IMFs are derived through empirical mode decomposition (EMD) and ensemble EMD. Principal component analysis, linear discriminant analysis, and Bayesian classifier are employed for defect classification algorithm. The proposed approach is validated by experiments, and results indicate that the cracks and cavities in the surface and subsurface can be classified satisfactorily. •A new PEC feature (PSD of the IMFs) is investigated.•The PSD distributions from EMD and EEMD transform are analyzed.•The classifiers including PCA-LDA and PCA-Bayes are employed for defect classification.•The multi-resolution IMFs provide an alternative to acquire more classifying features.</description><identifier>ISSN: 0963-8695</identifier><identifier>EISSN: 1879-1174</identifier><identifier>DOI: 10.1016/j.ndteint.2015.11.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Classification ; Cracks ; Defect classification ; Defects ; Density ; Empirical mode decomposition ; Ensemble empirical mode decomposition ; Feature extraction ; Power spectrum density analysis ; Principal component analysis ; Pulsed eddy current ; Spectra</subject><ispartof>NDT &amp; E international : independent nondestructive testing and evaluation, 2016-03, Vol.78, p.37-51</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-5c2139b54efa5c7b3f0726f0367f4df9b54fd76e4bd252e13c687282a7f208263</citedby><cites>FETCH-LOGICAL-c342t-5c2139b54efa5c7b3f0726f0367f4df9b54fd76e4bd252e13c687282a7f208263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0963869515001255$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Peng, Ying</creatorcontrib><creatorcontrib>Qiu, Xuanbing</creatorcontrib><creatorcontrib>Wei, Jilin</creatorcontrib><creatorcontrib>Li, Chuanliang</creatorcontrib><creatorcontrib>Cui, Xiaochao</creatorcontrib><title>Defect classification using PEC respones based on power spectral density analysis combined with EMD and EEMD</title><title>NDT &amp; E international : independent nondestructive testing and evaluation</title><description>The defect classification is investigated by using features-based giant-magnetoresistive pulsed eddy current (GMR-PEC) sensor. The power spectrum density of the intrinsic mode functions (IMFs) is extracted as the classification feature, considering the disadvantage of selecting a wavelet base determined in previous work on spectral analysis combined with wavelet-decomposition. The IMFs are derived through empirical mode decomposition (EMD) and ensemble EMD. Principal component analysis, linear discriminant analysis, and Bayesian classifier are employed for defect classification algorithm. The proposed approach is validated by experiments, and results indicate that the cracks and cavities in the surface and subsurface can be classified satisfactorily. •A new PEC feature (PSD of the IMFs) is investigated.•The PSD distributions from EMD and EEMD transform are analyzed.•The classifiers including PCA-LDA and PCA-Bayes are employed for defect classification.•The multi-resolution IMFs provide an alternative to acquire more classifying features.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Cracks</subject><subject>Defect classification</subject><subject>Defects</subject><subject>Density</subject><subject>Empirical mode decomposition</subject><subject>Ensemble empirical mode decomposition</subject><subject>Feature extraction</subject><subject>Power spectrum density analysis</subject><subject>Principal component analysis</subject><subject>Pulsed eddy current</subject><subject>Spectra</subject><issn>0963-8695</issn><issn>1879-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVooK7Tn1DQsZfd6GNXWp9KsZ004NAekrPQSqNUZq3datY1_veVce49zcD7vAPzEPKFs5ozru73dfIzxDTXgvG25rxmTN6QBe_0quJcNx_Igq2UrDq1aj-ST4h7xphopF6QYQMB3EzdYBFjiM7OcUz0iDG90V_bNc2A05gAaW8RPC3ZNJ4gU5xKLduBekgY5zO1yQ5njEjdeOhjKuwpzr_p9nlTIk-3Zbkjt8EOCJ_f55K8Pmxf1j-q3c_Hp_X3XeVkI-aqdYLLVd82EGzrdC8D00IFJpUOjQ-XJHitoOm9aAVw6VSnRSesDoJ1Qskl-Xq9O-XxzxFwNoeIDobBJhiPaLjulCio5gVtr6jLI2KGYKYcDzafDWfmYtfszbtdc7FrODfFbul9u_ag_PE3QjboIiQHPuYixvgx_ufCP7rEhi8</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Peng, Ying</creator><creator>Qiu, Xuanbing</creator><creator>Wei, Jilin</creator><creator>Li, Chuanliang</creator><creator>Cui, Xiaochao</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201603</creationdate><title>Defect classification using PEC respones based on power spectral density analysis combined with EMD and EEMD</title><author>Peng, Ying ; Qiu, Xuanbing ; Wei, Jilin ; Li, Chuanliang ; Cui, Xiaochao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-5c2139b54efa5c7b3f0726f0367f4df9b54fd76e4bd252e13c687282a7f208263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Cracks</topic><topic>Defect classification</topic><topic>Defects</topic><topic>Density</topic><topic>Empirical mode decomposition</topic><topic>Ensemble empirical mode decomposition</topic><topic>Feature extraction</topic><topic>Power spectrum density analysis</topic><topic>Principal component analysis</topic><topic>Pulsed eddy current</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Ying</creatorcontrib><creatorcontrib>Qiu, Xuanbing</creatorcontrib><creatorcontrib>Wei, Jilin</creatorcontrib><creatorcontrib>Li, Chuanliang</creatorcontrib><creatorcontrib>Cui, Xiaochao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>NDT &amp; E international : independent nondestructive testing and evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Ying</au><au>Qiu, Xuanbing</au><au>Wei, Jilin</au><au>Li, Chuanliang</au><au>Cui, Xiaochao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect classification using PEC respones based on power spectral density analysis combined with EMD and EEMD</atitle><jtitle>NDT &amp; E international : independent nondestructive testing and evaluation</jtitle><date>2016-03</date><risdate>2016</risdate><volume>78</volume><spage>37</spage><epage>51</epage><pages>37-51</pages><issn>0963-8695</issn><eissn>1879-1174</eissn><abstract>The defect classification is investigated by using features-based giant-magnetoresistive pulsed eddy current (GMR-PEC) sensor. The power spectrum density of the intrinsic mode functions (IMFs) is extracted as the classification feature, considering the disadvantage of selecting a wavelet base determined in previous work on spectral analysis combined with wavelet-decomposition. The IMFs are derived through empirical mode decomposition (EMD) and ensemble EMD. Principal component analysis, linear discriminant analysis, and Bayesian classifier are employed for defect classification algorithm. The proposed approach is validated by experiments, and results indicate that the cracks and cavities in the surface and subsurface can be classified satisfactorily. •A new PEC feature (PSD of the IMFs) is investigated.•The PSD distributions from EMD and EEMD transform are analyzed.•The classifiers including PCA-LDA and PCA-Bayes are employed for defect classification.•The multi-resolution IMFs provide an alternative to acquire more classifying features.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ndteint.2015.11.003</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-8695
ispartof NDT & E international : independent nondestructive testing and evaluation, 2016-03, Vol.78, p.37-51
issn 0963-8695
1879-1174
language eng
recordid cdi_proquest_miscellaneous_1786220871
source Elsevier ScienceDirect Journals
subjects Algorithms
Classification
Cracks
Defect classification
Defects
Density
Empirical mode decomposition
Ensemble empirical mode decomposition
Feature extraction
Power spectrum density analysis
Principal component analysis
Pulsed eddy current
Spectra
title Defect classification using PEC respones based on power spectral density analysis combined with EMD and EEMD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20classification%20using%20PEC%20respones%20based%20on%20power%20spectral%20density%20analysis%20combined%20with%20EMD%20and%20EEMD&rft.jtitle=NDT%20&%20E%20international%20:%20independent%20nondestructive%20testing%20and%20evaluation&rft.au=Peng,%20Ying&rft.date=2016-03&rft.volume=78&rft.spage=37&rft.epage=51&rft.pages=37-51&rft.issn=0963-8695&rft.eissn=1879-1174&rft_id=info:doi/10.1016/j.ndteint.2015.11.003&rft_dat=%3Cproquest_cross%3E1786220871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786220871&rft_id=info:pmid/&rft_els_id=S0963869515001255&rfr_iscdi=true