Defect classification using PEC respones based on power spectral density analysis combined with EMD and EEMD
The defect classification is investigated by using features-based giant-magnetoresistive pulsed eddy current (GMR-PEC) sensor. The power spectrum density of the intrinsic mode functions (IMFs) is extracted as the classification feature, considering the disadvantage of selecting a wavelet base determ...
Gespeichert in:
Veröffentlicht in: | NDT & E international : independent nondestructive testing and evaluation 2016-03, Vol.78, p.37-51 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | |
container_start_page | 37 |
container_title | NDT & E international : independent nondestructive testing and evaluation |
container_volume | 78 |
creator | Peng, Ying Qiu, Xuanbing Wei, Jilin Li, Chuanliang Cui, Xiaochao |
description | The defect classification is investigated by using features-based giant-magnetoresistive pulsed eddy current (GMR-PEC) sensor. The power spectrum density of the intrinsic mode functions (IMFs) is extracted as the classification feature, considering the disadvantage of selecting a wavelet base determined in previous work on spectral analysis combined with wavelet-decomposition. The IMFs are derived through empirical mode decomposition (EMD) and ensemble EMD. Principal component analysis, linear discriminant analysis, and Bayesian classifier are employed for defect classification algorithm. The proposed approach is validated by experiments, and results indicate that the cracks and cavities in the surface and subsurface can be classified satisfactorily.
•A new PEC feature (PSD of the IMFs) is investigated.•The PSD distributions from EMD and EEMD transform are analyzed.•The classifiers including PCA-LDA and PCA-Bayes are employed for defect classification.•The multi-resolution IMFs provide an alternative to acquire more classifying features. |
doi_str_mv | 10.1016/j.ndteint.2015.11.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786220871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963869515001255</els_id><sourcerecordid>1786220871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-5c2139b54efa5c7b3f0726f0367f4df9b54fd76e4bd252e13c687282a7f208263</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVooK7Tn1DQsZfd6GNXWp9KsZ004NAekrPQSqNUZq3datY1_veVce49zcD7vAPzEPKFs5ozru73dfIzxDTXgvG25rxmTN6QBe_0quJcNx_Igq2UrDq1aj-ST4h7xphopF6QYQMB3EzdYBFjiM7OcUz0iDG90V_bNc2A05gAaW8RPC3ZNJ4gU5xKLduBekgY5zO1yQ5njEjdeOhjKuwpzr_p9nlTIk-3Zbkjt8EOCJ_f55K8Pmxf1j-q3c_Hp_X3XeVkI-aqdYLLVd82EGzrdC8D00IFJpUOjQ-XJHitoOm9aAVw6VSnRSesDoJ1Qskl-Xq9O-XxzxFwNoeIDobBJhiPaLjulCio5gVtr6jLI2KGYKYcDzafDWfmYtfszbtdc7FrODfFbul9u_ag_PE3QjboIiQHPuYixvgx_ufCP7rEhi8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786220871</pqid></control><display><type>article</type><title>Defect classification using PEC respones based on power spectral density analysis combined with EMD and EEMD</title><source>Elsevier ScienceDirect Journals</source><creator>Peng, Ying ; Qiu, Xuanbing ; Wei, Jilin ; Li, Chuanliang ; Cui, Xiaochao</creator><creatorcontrib>Peng, Ying ; Qiu, Xuanbing ; Wei, Jilin ; Li, Chuanliang ; Cui, Xiaochao</creatorcontrib><description>The defect classification is investigated by using features-based giant-magnetoresistive pulsed eddy current (GMR-PEC) sensor. The power spectrum density of the intrinsic mode functions (IMFs) is extracted as the classification feature, considering the disadvantage of selecting a wavelet base determined in previous work on spectral analysis combined with wavelet-decomposition. The IMFs are derived through empirical mode decomposition (EMD) and ensemble EMD. Principal component analysis, linear discriminant analysis, and Bayesian classifier are employed for defect classification algorithm. The proposed approach is validated by experiments, and results indicate that the cracks and cavities in the surface and subsurface can be classified satisfactorily.
•A new PEC feature (PSD of the IMFs) is investigated.•The PSD distributions from EMD and EEMD transform are analyzed.•The classifiers including PCA-LDA and PCA-Bayes are employed for defect classification.•The multi-resolution IMFs provide an alternative to acquire more classifying features.</description><identifier>ISSN: 0963-8695</identifier><identifier>EISSN: 1879-1174</identifier><identifier>DOI: 10.1016/j.ndteint.2015.11.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algorithms ; Classification ; Cracks ; Defect classification ; Defects ; Density ; Empirical mode decomposition ; Ensemble empirical mode decomposition ; Feature extraction ; Power spectrum density analysis ; Principal component analysis ; Pulsed eddy current ; Spectra</subject><ispartof>NDT & E international : independent nondestructive testing and evaluation, 2016-03, Vol.78, p.37-51</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-5c2139b54efa5c7b3f0726f0367f4df9b54fd76e4bd252e13c687282a7f208263</citedby><cites>FETCH-LOGICAL-c342t-5c2139b54efa5c7b3f0726f0367f4df9b54fd76e4bd252e13c687282a7f208263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0963869515001255$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Peng, Ying</creatorcontrib><creatorcontrib>Qiu, Xuanbing</creatorcontrib><creatorcontrib>Wei, Jilin</creatorcontrib><creatorcontrib>Li, Chuanliang</creatorcontrib><creatorcontrib>Cui, Xiaochao</creatorcontrib><title>Defect classification using PEC respones based on power spectral density analysis combined with EMD and EEMD</title><title>NDT & E international : independent nondestructive testing and evaluation</title><description>The defect classification is investigated by using features-based giant-magnetoresistive pulsed eddy current (GMR-PEC) sensor. The power spectrum density of the intrinsic mode functions (IMFs) is extracted as the classification feature, considering the disadvantage of selecting a wavelet base determined in previous work on spectral analysis combined with wavelet-decomposition. The IMFs are derived through empirical mode decomposition (EMD) and ensemble EMD. Principal component analysis, linear discriminant analysis, and Bayesian classifier are employed for defect classification algorithm. The proposed approach is validated by experiments, and results indicate that the cracks and cavities in the surface and subsurface can be classified satisfactorily.
•A new PEC feature (PSD of the IMFs) is investigated.•The PSD distributions from EMD and EEMD transform are analyzed.•The classifiers including PCA-LDA and PCA-Bayes are employed for defect classification.•The multi-resolution IMFs provide an alternative to acquire more classifying features.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Cracks</subject><subject>Defect classification</subject><subject>Defects</subject><subject>Density</subject><subject>Empirical mode decomposition</subject><subject>Ensemble empirical mode decomposition</subject><subject>Feature extraction</subject><subject>Power spectrum density analysis</subject><subject>Principal component analysis</subject><subject>Pulsed eddy current</subject><subject>Spectra</subject><issn>0963-8695</issn><issn>1879-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVooK7Tn1DQsZfd6GNXWp9KsZ004NAekrPQSqNUZq3datY1_veVce49zcD7vAPzEPKFs5ozru73dfIzxDTXgvG25rxmTN6QBe_0quJcNx_Igq2UrDq1aj-ST4h7xphopF6QYQMB3EzdYBFjiM7OcUz0iDG90V_bNc2A05gAaW8RPC3ZNJ4gU5xKLduBekgY5zO1yQ5njEjdeOhjKuwpzr_p9nlTIk-3Zbkjt8EOCJ_f55K8Pmxf1j-q3c_Hp_X3XeVkI-aqdYLLVd82EGzrdC8D00IFJpUOjQ-XJHitoOm9aAVw6VSnRSesDoJ1Qskl-Xq9O-XxzxFwNoeIDobBJhiPaLjulCio5gVtr6jLI2KGYKYcDzafDWfmYtfszbtdc7FrODfFbul9u_ag_PE3QjboIiQHPuYixvgx_ufCP7rEhi8</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Peng, Ying</creator><creator>Qiu, Xuanbing</creator><creator>Wei, Jilin</creator><creator>Li, Chuanliang</creator><creator>Cui, Xiaochao</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>201603</creationdate><title>Defect classification using PEC respones based on power spectral density analysis combined with EMD and EEMD</title><author>Peng, Ying ; Qiu, Xuanbing ; Wei, Jilin ; Li, Chuanliang ; Cui, Xiaochao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-5c2139b54efa5c7b3f0726f0367f4df9b54fd76e4bd252e13c687282a7f208263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Cracks</topic><topic>Defect classification</topic><topic>Defects</topic><topic>Density</topic><topic>Empirical mode decomposition</topic><topic>Ensemble empirical mode decomposition</topic><topic>Feature extraction</topic><topic>Power spectrum density analysis</topic><topic>Principal component analysis</topic><topic>Pulsed eddy current</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Ying</creatorcontrib><creatorcontrib>Qiu, Xuanbing</creatorcontrib><creatorcontrib>Wei, Jilin</creatorcontrib><creatorcontrib>Li, Chuanliang</creatorcontrib><creatorcontrib>Cui, Xiaochao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>NDT & E international : independent nondestructive testing and evaluation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Ying</au><au>Qiu, Xuanbing</au><au>Wei, Jilin</au><au>Li, Chuanliang</au><au>Cui, Xiaochao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect classification using PEC respones based on power spectral density analysis combined with EMD and EEMD</atitle><jtitle>NDT & E international : independent nondestructive testing and evaluation</jtitle><date>2016-03</date><risdate>2016</risdate><volume>78</volume><spage>37</spage><epage>51</epage><pages>37-51</pages><issn>0963-8695</issn><eissn>1879-1174</eissn><abstract>The defect classification is investigated by using features-based giant-magnetoresistive pulsed eddy current (GMR-PEC) sensor. The power spectrum density of the intrinsic mode functions (IMFs) is extracted as the classification feature, considering the disadvantage of selecting a wavelet base determined in previous work on spectral analysis combined with wavelet-decomposition. The IMFs are derived through empirical mode decomposition (EMD) and ensemble EMD. Principal component analysis, linear discriminant analysis, and Bayesian classifier are employed for defect classification algorithm. The proposed approach is validated by experiments, and results indicate that the cracks and cavities in the surface and subsurface can be classified satisfactorily.
•A new PEC feature (PSD of the IMFs) is investigated.•The PSD distributions from EMD and EEMD transform are analyzed.•The classifiers including PCA-LDA and PCA-Bayes are employed for defect classification.•The multi-resolution IMFs provide an alternative to acquire more classifying features.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ndteint.2015.11.003</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-8695 |
ispartof | NDT & E international : independent nondestructive testing and evaluation, 2016-03, Vol.78, p.37-51 |
issn | 0963-8695 1879-1174 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786220871 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Classification Cracks Defect classification Defects Density Empirical mode decomposition Ensemble empirical mode decomposition Feature extraction Power spectrum density analysis Principal component analysis Pulsed eddy current Spectra |
title | Defect classification using PEC respones based on power spectral density analysis combined with EMD and EEMD |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20classification%20using%20PEC%20respones%20based%20on%20power%20spectral%20density%20analysis%20combined%20with%20EMD%20and%20EEMD&rft.jtitle=NDT%20&%20E%20international%20:%20independent%20nondestructive%20testing%20and%20evaluation&rft.au=Peng,%20Ying&rft.date=2016-03&rft.volume=78&rft.spage=37&rft.epage=51&rft.pages=37-51&rft.issn=0963-8695&rft.eissn=1879-1174&rft_id=info:doi/10.1016/j.ndteint.2015.11.003&rft_dat=%3Cproquest_cross%3E1786220871%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786220871&rft_id=info:pmid/&rft_els_id=S0963869515001255&rfr_iscdi=true |