Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites
We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...
Gespeichert in:
Veröffentlicht in: | Textile research journal 2016-01, Vol.86 (2), p.127-137 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137 |
---|---|
container_issue | 2 |
container_start_page | 127 |
container_title | Textile research journal |
container_volume | 86 |
creator | Patel, Jignesh S Boddu, Veera M Brenner, Matthew W Kumar, Ashok |
description | We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of different fabric count and strand density and two resin systems, a cycloaliphatic and a linear aliphatic system. These composites were fabricated using the vacuum-assisted resin transfer method. The flexural stress and ILSS data were obtained using a three-point bending test following ASTM 790-10 and ASTM D2344/D2344M standards. The GFRP composite sheet fabricated using a larger fabric count showed weak flexural strength as well as poor ILSS properties. However, it showed an average increase in energy dissipation of 95% and 7%, for resins SC780 and SC15, respectively, after five compression cycles over the measured range of compression strain. In comparison with the SC15 resin, the SC780 resin proved to have better flexural and ILSS properties but decreased energy dissipation. The results of this investigation help with the design of textile-reinforced composites for applications where bending strength, ILSS, and energy absorption are important. |
doi_str_mv | 10.1177/0040517515586165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786218812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0040517515586165</sage_id><sourcerecordid>1786218812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-ee8686484f346cfb61a857f7fe5f70064cead2a7e616c40db901e303e92af20d3</originalsourceid><addsrcrecordid>eNp1kU9r3DAQxUVpoNs09x4FvfQQt5ItS8oxhPQPBHppz0YrjzYKtuTMyJD9Ov2klbuFlkAvM4f3mzfDPMbeSvFBSmM-CqFEL00v-95qqfsXbCeN0o0xyr5ku01uNv0Ve030IISw1tgd-3kbAvjCc-DB7TF6TgVXX1YE7tLIlzwdZ0A-u4LxiefEwwRPK7ppAyEdyv0lj6kATm6OySGne9hqFYkuf3tAAjwc-RiJ4uJKrCZ13WFyRDzEPWCDEFPI6OHvQp_nJVMsQG_YWXATwcWffs5-fLr9fvOlufv2-evN9V3jO9WWBsBqq5VVoVPah72WzvYmmAB9MEJo5cGNrTNQv-OVGPdXQkInOrhqXWjF2J2z9yffBfPjClSGOZKHaXIJ8kqDNFa30lrZVvTdM_Qhr5jqdZXSfWfbTthKiRPlMRMhhGHBODs8DlIMW2jD89DqSHMaIXeAf0z_x_8C9xyaOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765382308</pqid></control><display><type>article</type><title>Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites</title><source>SAGE Complete A-Z List</source><creator>Patel, Jignesh S ; Boddu, Veera M ; Brenner, Matthew W ; Kumar, Ashok</creator><creatorcontrib>Patel, Jignesh S ; Boddu, Veera M ; Brenner, Matthew W ; Kumar, Ashok</creatorcontrib><description>We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of different fabric count and strand density and two resin systems, a cycloaliphatic and a linear aliphatic system. These composites were fabricated using the vacuum-assisted resin transfer method. The flexural stress and ILSS data were obtained using a three-point bending test following ASTM 790-10 and ASTM D2344/D2344M standards. The GFRP composite sheet fabricated using a larger fabric count showed weak flexural strength as well as poor ILSS properties. However, it showed an average increase in energy dissipation of 95% and 7%, for resins SC780 and SC15, respectively, after five compression cycles over the measured range of compression strain. In comparison with the SC15 resin, the SC780 resin proved to have better flexural and ILSS properties but decreased energy dissipation. The results of this investigation help with the design of textile-reinforced composites for applications where bending strength, ILSS, and energy absorption are important.</description><identifier>ISSN: 0040-5175</identifier><identifier>EISSN: 1746-7748</identifier><identifier>DOI: 10.1177/0040517515586165</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Composite materials ; Energy dissipation ; Fabrics ; Fiber reinforced composites ; Flexural strength ; Glass fiber reinforced plastics ; Modulus of rupture in bending ; Polymer matrix composites ; Polymers ; Resins ; Scanning electron microscopy ; Shear stress ; Studies ; Textiles</subject><ispartof>Textile research journal, 2016-01, Vol.86 (2), p.127-137</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Textile Research Institute Jan 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-ee8686484f346cfb61a857f7fe5f70064cead2a7e616c40db901e303e92af20d3</citedby><cites>FETCH-LOGICAL-c342t-ee8686484f346cfb61a857f7fe5f70064cead2a7e616c40db901e303e92af20d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0040517515586165$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0040517515586165$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Patel, Jignesh S</creatorcontrib><creatorcontrib>Boddu, Veera M</creatorcontrib><creatorcontrib>Brenner, Matthew W</creatorcontrib><creatorcontrib>Kumar, Ashok</creatorcontrib><title>Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites</title><title>Textile research journal</title><description>We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of different fabric count and strand density and two resin systems, a cycloaliphatic and a linear aliphatic system. These composites were fabricated using the vacuum-assisted resin transfer method. The flexural stress and ILSS data were obtained using a three-point bending test following ASTM 790-10 and ASTM D2344/D2344M standards. The GFRP composite sheet fabricated using a larger fabric count showed weak flexural strength as well as poor ILSS properties. However, it showed an average increase in energy dissipation of 95% and 7%, for resins SC780 and SC15, respectively, after five compression cycles over the measured range of compression strain. In comparison with the SC15 resin, the SC780 resin proved to have better flexural and ILSS properties but decreased energy dissipation. The results of this investigation help with the design of textile-reinforced composites for applications where bending strength, ILSS, and energy absorption are important.</description><subject>Composite materials</subject><subject>Energy dissipation</subject><subject>Fabrics</subject><subject>Fiber reinforced composites</subject><subject>Flexural strength</subject><subject>Glass fiber reinforced plastics</subject><subject>Modulus of rupture in bending</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Resins</subject><subject>Scanning electron microscopy</subject><subject>Shear stress</subject><subject>Studies</subject><subject>Textiles</subject><issn>0040-5175</issn><issn>1746-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU9r3DAQxUVpoNs09x4FvfQQt5ItS8oxhPQPBHppz0YrjzYKtuTMyJD9Ov2klbuFlkAvM4f3mzfDPMbeSvFBSmM-CqFEL00v-95qqfsXbCeN0o0xyr5ku01uNv0Ve030IISw1tgd-3kbAvjCc-DB7TF6TgVXX1YE7tLIlzwdZ0A-u4LxiefEwwRPK7ppAyEdyv0lj6kATm6OySGne9hqFYkuf3tAAjwc-RiJ4uJKrCZ13WFyRDzEPWCDEFPI6OHvQp_nJVMsQG_YWXATwcWffs5-fLr9fvOlufv2-evN9V3jO9WWBsBqq5VVoVPah72WzvYmmAB9MEJo5cGNrTNQv-OVGPdXQkInOrhqXWjF2J2z9yffBfPjClSGOZKHaXIJ8kqDNFa30lrZVvTdM_Qhr5jqdZXSfWfbTthKiRPlMRMhhGHBODs8DlIMW2jD89DqSHMaIXeAf0z_x_8C9xyaOw</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Patel, Jignesh S</creator><creator>Boddu, Veera M</creator><creator>Brenner, Matthew W</creator><creator>Kumar, Ashok</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M0K</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201601</creationdate><title>Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites</title><author>Patel, Jignesh S ; Boddu, Veera M ; Brenner, Matthew W ; Kumar, Ashok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-ee8686484f346cfb61a857f7fe5f70064cead2a7e616c40db901e303e92af20d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Composite materials</topic><topic>Energy dissipation</topic><topic>Fabrics</topic><topic>Fiber reinforced composites</topic><topic>Flexural strength</topic><topic>Glass fiber reinforced plastics</topic><topic>Modulus of rupture in bending</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Resins</topic><topic>Scanning electron microscopy</topic><topic>Shear stress</topic><topic>Studies</topic><topic>Textiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Jignesh S</creatorcontrib><creatorcontrib>Boddu, Veera M</creatorcontrib><creatorcontrib>Brenner, Matthew W</creatorcontrib><creatorcontrib>Kumar, Ashok</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>UK & Ireland Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Textile research journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Jignesh S</au><au>Boddu, Veera M</au><au>Brenner, Matthew W</au><au>Kumar, Ashok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites</atitle><jtitle>Textile research journal</jtitle><date>2016-01</date><risdate>2016</risdate><volume>86</volume><issue>2</issue><spage>127</spage><epage>137</epage><pages>127-137</pages><issn>0040-5175</issn><eissn>1746-7748</eissn><abstract>We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of different fabric count and strand density and two resin systems, a cycloaliphatic and a linear aliphatic system. These composites were fabricated using the vacuum-assisted resin transfer method. The flexural stress and ILSS data were obtained using a three-point bending test following ASTM 790-10 and ASTM D2344/D2344M standards. The GFRP composite sheet fabricated using a larger fabric count showed weak flexural strength as well as poor ILSS properties. However, it showed an average increase in energy dissipation of 95% and 7%, for resins SC780 and SC15, respectively, after five compression cycles over the measured range of compression strain. In comparison with the SC15 resin, the SC780 resin proved to have better flexural and ILSS properties but decreased energy dissipation. The results of this investigation help with the design of textile-reinforced composites for applications where bending strength, ILSS, and energy absorption are important.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0040517515586165</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5175 |
ispartof | Textile research journal, 2016-01, Vol.86 (2), p.127-137 |
issn | 0040-5175 1746-7748 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786218812 |
source | SAGE Complete A-Z List |
subjects | Composite materials Energy dissipation Fabrics Fiber reinforced composites Flexural strength Glass fiber reinforced plastics Modulus of rupture in bending Polymer matrix composites Polymers Resins Scanning electron microscopy Shear stress Studies Textiles |
title | Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A43%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20fabric%20structure%20and%20polymer%20matrix%20on%20flexural%20strength,%20interlaminar%20shear%20stress,%20and%20energy%20dissipation%20of%20glass%20fiber-reinforced%20polymer%20composites&rft.jtitle=Textile%20research%20journal&rft.au=Patel,%20Jignesh%20S&rft.date=2016-01&rft.volume=86&rft.issue=2&rft.spage=127&rft.epage=137&rft.pages=127-137&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177/0040517515586165&rft_dat=%3Cproquest_cross%3E1786218812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765382308&rft_id=info:pmid/&rft_sage_id=10.1177_0040517515586165&rfr_iscdi=true |