Biodiesel production via injection of superheated methanol technology at atmospheric pressure

[Display omitted] •Non-catalytic superheated methanol for biodiesel production is developed.•Crude Jatropha curcas oil with high FFA can be directly used as oil feedstock.•High content of biodiesel can be produced.•Separation of FAME and glycerol from the sample product is easy. In this high demand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2014-11, Vol.87, p.1231-1238
Hauptverfasser: Ang, Gaik Tin, Tan, Kok Tat, Lee, Keat Teong, Mohamed, Abdul Rahman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1238
container_issue
container_start_page 1231
container_title Energy conversion and management
container_volume 87
creator Ang, Gaik Tin
Tan, Kok Tat
Lee, Keat Teong
Mohamed, Abdul Rahman
description [Display omitted] •Non-catalytic superheated methanol for biodiesel production is developed.•Crude Jatropha curcas oil with high FFA can be directly used as oil feedstock.•High content of biodiesel can be produced.•Separation of FAME and glycerol from the sample product is easy. In this high demand of renewable energy market, biodiesel was extensively produced via various catalytic and non-catalytic technologies. Conventional catalytic transesterification for biodiesel production has been shown to have limitation in terms of sensitivity to high water and free fatty acid, complicated separation and purification of biodiesel. In this study, an alternative and innovative approach was carried out via non-catalytic superheated methanol technology to produce biodiesel. Similar to supercritical reaction, the solvent need to be heated beyond the critical temperature but the reactor pressure remained at 0.1MPa (atmospheric pressure). Transesterification reaction with superheated methanol was carried out at different reaction temperature within the limit of 270–300°C and at different methanol flow rate ranging from 1ml/min to 3ml/min for 4h. Results obtained showed that the highest biodiesel yield at 71.54% w/w was achieved at reaction temperature 290°C and methanol flow rate at 2ml/min with 88.81% w/w FAME content, implying the huge potential of superheated technology in producing FAME.
doi_str_mv 10.1016/j.enconman.2014.02.037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786217951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890414001563</els_id><sourcerecordid>1786217951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-305dbe04457c0ebac720cb9f9b82a814f6e6f5b646de41d8d94a96877f8712eb3</originalsourceid><addsrcrecordid>eNqNkE9r3DAQxUVpoNukX6H4UujFzkiW9efWJrRJIJBLeixClsZdLba1kexAvn21bJJrAgOPgTdvZn6EfKXQUKDifNfg7OI82blhQHkDrIFWfiAbqqSuGWPyI9kA1aJWGvgn8jnnHQC0HYgN-XsRog-Ycaz2KfrVLSHO1WOwVZh3eOziUOV1j2mLdkFfTbhs7RzHakG3LRr_PVV2KTXFvN9iCq5EYc5rwjNyMtgx45dnPSV_fv-6v7yub--ubi5_3tauo91St9D5HoHzTjrA3jrJwPV60L1iVlE-CBRD1wsuPHLqldfcaqGkHJSkDPv2lHw_5pYfHlbMi5lCdjiOdsa4ZkOlEoxK3dF3WAVrOya1LlZxtLoUc044mH0Kk01PhoI5oDc784LeHNAbYKagL4PfnnfY7Ow4JDu7kF-nmVJMcX245cfRh4XNY8BksgslEX1Ihb3xMby16j-aDZ8T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762352799</pqid></control><display><type>article</type><title>Biodiesel production via injection of superheated methanol technology at atmospheric pressure</title><source>Elsevier ScienceDirect Journals</source><creator>Ang, Gaik Tin ; Tan, Kok Tat ; Lee, Keat Teong ; Mohamed, Abdul Rahman</creator><creatorcontrib>Ang, Gaik Tin ; Tan, Kok Tat ; Lee, Keat Teong ; Mohamed, Abdul Rahman</creatorcontrib><description>[Display omitted] •Non-catalytic superheated methanol for biodiesel production is developed.•Crude Jatropha curcas oil with high FFA can be directly used as oil feedstock.•High content of biodiesel can be produced.•Separation of FAME and glycerol from the sample product is easy. In this high demand of renewable energy market, biodiesel was extensively produced via various catalytic and non-catalytic technologies. Conventional catalytic transesterification for biodiesel production has been shown to have limitation in terms of sensitivity to high water and free fatty acid, complicated separation and purification of biodiesel. In this study, an alternative and innovative approach was carried out via non-catalytic superheated methanol technology to produce biodiesel. Similar to supercritical reaction, the solvent need to be heated beyond the critical temperature but the reactor pressure remained at 0.1MPa (atmospheric pressure). Transesterification reaction with superheated methanol was carried out at different reaction temperature within the limit of 270–300°C and at different methanol flow rate ranging from 1ml/min to 3ml/min for 4h. Results obtained showed that the highest biodiesel yield at 71.54% w/w was achieved at reaction temperature 290°C and methanol flow rate at 2ml/min with 88.81% w/w FAME content, implying the huge potential of superheated technology in producing FAME.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2014.02.037</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Atmospheric pressure ; Barometric pressure ; Biodiesel ; Catalysis ; Catalysts ; Energy ; Exact sciences and technology ; Flow rate ; Methyl alcohol ; Superheated methanol ; Transesterification</subject><ispartof>Energy conversion and management, 2014-11, Vol.87, p.1231-1238</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-305dbe04457c0ebac720cb9f9b82a814f6e6f5b646de41d8d94a96877f8712eb3</citedby><cites>FETCH-LOGICAL-c515t-305dbe04457c0ebac720cb9f9b82a814f6e6f5b646de41d8d94a96877f8712eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enconman.2014.02.037$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3536,23910,23911,25119,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28828491$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ang, Gaik Tin</creatorcontrib><creatorcontrib>Tan, Kok Tat</creatorcontrib><creatorcontrib>Lee, Keat Teong</creatorcontrib><creatorcontrib>Mohamed, Abdul Rahman</creatorcontrib><title>Biodiesel production via injection of superheated methanol technology at atmospheric pressure</title><title>Energy conversion and management</title><description>[Display omitted] •Non-catalytic superheated methanol for biodiesel production is developed.•Crude Jatropha curcas oil with high FFA can be directly used as oil feedstock.•High content of biodiesel can be produced.•Separation of FAME and glycerol from the sample product is easy. In this high demand of renewable energy market, biodiesel was extensively produced via various catalytic and non-catalytic technologies. Conventional catalytic transesterification for biodiesel production has been shown to have limitation in terms of sensitivity to high water and free fatty acid, complicated separation and purification of biodiesel. In this study, an alternative and innovative approach was carried out via non-catalytic superheated methanol technology to produce biodiesel. Similar to supercritical reaction, the solvent need to be heated beyond the critical temperature but the reactor pressure remained at 0.1MPa (atmospheric pressure). Transesterification reaction with superheated methanol was carried out at different reaction temperature within the limit of 270–300°C and at different methanol flow rate ranging from 1ml/min to 3ml/min for 4h. Results obtained showed that the highest biodiesel yield at 71.54% w/w was achieved at reaction temperature 290°C and methanol flow rate at 2ml/min with 88.81% w/w FAME content, implying the huge potential of superheated technology in producing FAME.</description><subject>Applied sciences</subject><subject>Atmospheric pressure</subject><subject>Barometric pressure</subject><subject>Biodiesel</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Flow rate</subject><subject>Methyl alcohol</subject><subject>Superheated methanol</subject><subject>Transesterification</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE9r3DAQxUVpoNukX6H4UujFzkiW9efWJrRJIJBLeixClsZdLba1kexAvn21bJJrAgOPgTdvZn6EfKXQUKDifNfg7OI82blhQHkDrIFWfiAbqqSuGWPyI9kA1aJWGvgn8jnnHQC0HYgN-XsRog-Ycaz2KfrVLSHO1WOwVZh3eOziUOV1j2mLdkFfTbhs7RzHakG3LRr_PVV2KTXFvN9iCq5EYc5rwjNyMtgx45dnPSV_fv-6v7yub--ubi5_3tauo91St9D5HoHzTjrA3jrJwPV60L1iVlE-CBRD1wsuPHLqldfcaqGkHJSkDPv2lHw_5pYfHlbMi5lCdjiOdsa4ZkOlEoxK3dF3WAVrOya1LlZxtLoUc044mH0Kk01PhoI5oDc784LeHNAbYKagL4PfnnfY7Ow4JDu7kF-nmVJMcX245cfRh4XNY8BksgslEX1Ihb3xMby16j-aDZ8T</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Ang, Gaik Tin</creator><creator>Tan, Kok Tat</creator><creator>Lee, Keat Teong</creator><creator>Mohamed, Abdul Rahman</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20141101</creationdate><title>Biodiesel production via injection of superheated methanol technology at atmospheric pressure</title><author>Ang, Gaik Tin ; Tan, Kok Tat ; Lee, Keat Teong ; Mohamed, Abdul Rahman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-305dbe04457c0ebac720cb9f9b82a814f6e6f5b646de41d8d94a96877f8712eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Atmospheric pressure</topic><topic>Barometric pressure</topic><topic>Biodiesel</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Flow rate</topic><topic>Methyl alcohol</topic><topic>Superheated methanol</topic><topic>Transesterification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ang, Gaik Tin</creatorcontrib><creatorcontrib>Tan, Kok Tat</creatorcontrib><creatorcontrib>Lee, Keat Teong</creatorcontrib><creatorcontrib>Mohamed, Abdul Rahman</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ang, Gaik Tin</au><au>Tan, Kok Tat</au><au>Lee, Keat Teong</au><au>Mohamed, Abdul Rahman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodiesel production via injection of superheated methanol technology at atmospheric pressure</atitle><jtitle>Energy conversion and management</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>87</volume><spage>1231</spage><epage>1238</epage><pages>1231-1238</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>[Display omitted] •Non-catalytic superheated methanol for biodiesel production is developed.•Crude Jatropha curcas oil with high FFA can be directly used as oil feedstock.•High content of biodiesel can be produced.•Separation of FAME and glycerol from the sample product is easy. In this high demand of renewable energy market, biodiesel was extensively produced via various catalytic and non-catalytic technologies. Conventional catalytic transesterification for biodiesel production has been shown to have limitation in terms of sensitivity to high water and free fatty acid, complicated separation and purification of biodiesel. In this study, an alternative and innovative approach was carried out via non-catalytic superheated methanol technology to produce biodiesel. Similar to supercritical reaction, the solvent need to be heated beyond the critical temperature but the reactor pressure remained at 0.1MPa (atmospheric pressure). Transesterification reaction with superheated methanol was carried out at different reaction temperature within the limit of 270–300°C and at different methanol flow rate ranging from 1ml/min to 3ml/min for 4h. Results obtained showed that the highest biodiesel yield at 71.54% w/w was achieved at reaction temperature 290°C and methanol flow rate at 2ml/min with 88.81% w/w FAME content, implying the huge potential of superheated technology in producing FAME.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2014.02.037</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2014-11, Vol.87, p.1231-1238
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_miscellaneous_1786217951
source Elsevier ScienceDirect Journals
subjects Applied sciences
Atmospheric pressure
Barometric pressure
Biodiesel
Catalysis
Catalysts
Energy
Exact sciences and technology
Flow rate
Methyl alcohol
Superheated methanol
Transesterification
title Biodiesel production via injection of superheated methanol technology at atmospheric pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodiesel%20production%20via%20injection%20of%20superheated%20methanol%20technology%20at%20atmospheric%20pressure&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Ang,%20Gaik%20Tin&rft.date=2014-11-01&rft.volume=87&rft.spage=1231&rft.epage=1238&rft.pages=1231-1238&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2014.02.037&rft_dat=%3Cproquest_cross%3E1786217951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762352799&rft_id=info:pmid/&rft_els_id=S0196890414001563&rfr_iscdi=true