Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis
The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified paramet...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2015-09, Vol.92 (6), Article 064011 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physical review. D |
container_volume | 92 |
creator | Edwards, Matthew C. Meyer, Renate Christensen, Nelson |
description | The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components. |
doi_str_mv | 10.1103/PhysRevD.92.064011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786217373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786217373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-7dacfffa92080bb703f38d459785ff1e6642379af5bdd4323cf0431a79517f433</originalsourceid><addsrcrecordid>eNo1kElPwzAQhSMEEqXwBzj5yCXFSxLHRyirVAmE4GxNHZsaZcPjtsq_J104zbzRm9GbL0muGZ0xRsXt-2rAD7t5mCk-o0VGGTtJJizPacpFUZ4ee6lUeZ5cIP5QKngh5STp7mGw6KElaBvfQ4DGxuAN6butDQR7a2KAmlS2RR8HYjH6BqLvWrL1cUWg72tv9gMkviXfATY-7vW4tYWNJRVEIDDKAT1eJmcOarRXxzpNvp4eP-cv6eLt-XV-t0iN4FlMZQXGOQeK05Iul5IKJ8oqy5Usc-eYLYqMC6nA5cuqygQXxtFMMJAqZ9JlQkyTm8PdPnS_6zG1bjwaW9fQ2m6Nmsmy4EwKubPyg9WEDjFYp_sw_hgGzaje0dX_dLXi-kBX_AFYenJ3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786217373</pqid></control><display><type>article</type><title>Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis</title><source>American Physical Society Journals</source><creator>Edwards, Matthew C. ; Meyer, Renate ; Christensen, Nelson</creator><creatorcontrib>Edwards, Matthew C. ; Meyer, Renate ; Christensen, Nelson</creatorcontrib><description>The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.</description><identifier>ISSN: 1550-7998</identifier><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 1550-2368</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.92.064011</identifier><language>eng</language><subject>Bayesian analysis ; Data processing ; Data transmission ; Density ; Dirichlet problem ; Gravitational waves ; Noise ; Spectra</subject><ispartof>Physical review. D, 2015-09, Vol.92 (6), Article 064011</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-7dacfffa92080bb703f38d459785ff1e6642379af5bdd4323cf0431a79517f433</citedby><cites>FETCH-LOGICAL-c324t-7dacfffa92080bb703f38d459785ff1e6642379af5bdd4323cf0431a79517f433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Edwards, Matthew C.</creatorcontrib><creatorcontrib>Meyer, Renate</creatorcontrib><creatorcontrib>Christensen, Nelson</creatorcontrib><title>Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis</title><title>Physical review. D</title><description>The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.</description><subject>Bayesian analysis</subject><subject>Data processing</subject><subject>Data transmission</subject><subject>Density</subject><subject>Dirichlet problem</subject><subject>Gravitational waves</subject><subject>Noise</subject><subject>Spectra</subject><issn>1550-7998</issn><issn>2470-0010</issn><issn>1550-2368</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kElPwzAQhSMEEqXwBzj5yCXFSxLHRyirVAmE4GxNHZsaZcPjtsq_J104zbzRm9GbL0muGZ0xRsXt-2rAD7t5mCk-o0VGGTtJJizPacpFUZ4ee6lUeZ5cIP5QKngh5STp7mGw6KElaBvfQ4DGxuAN6butDQR7a2KAmlS2RR8HYjH6BqLvWrL1cUWg72tv9gMkviXfATY-7vW4tYWNJRVEIDDKAT1eJmcOarRXxzpNvp4eP-cv6eLt-XV-t0iN4FlMZQXGOQeK05Iul5IKJ8oqy5Usc-eYLYqMC6nA5cuqygQXxtFMMJAqZ9JlQkyTm8PdPnS_6zG1bjwaW9fQ2m6Nmsmy4EwKubPyg9WEDjFYp_sw_hgGzaje0dX_dLXi-kBX_AFYenJ3</recordid><startdate>20150909</startdate><enddate>20150909</enddate><creator>Edwards, Matthew C.</creator><creator>Meyer, Renate</creator><creator>Christensen, Nelson</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150909</creationdate><title>Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis</title><author>Edwards, Matthew C. ; Meyer, Renate ; Christensen, Nelson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-7dacfffa92080bb703f38d459785ff1e6642379af5bdd4323cf0431a79517f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayesian analysis</topic><topic>Data processing</topic><topic>Data transmission</topic><topic>Density</topic><topic>Dirichlet problem</topic><topic>Gravitational waves</topic><topic>Noise</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edwards, Matthew C.</creatorcontrib><creatorcontrib>Meyer, Renate</creatorcontrib><creatorcontrib>Christensen, Nelson</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edwards, Matthew C.</au><au>Meyer, Renate</au><au>Christensen, Nelson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis</atitle><jtitle>Physical review. D</jtitle><date>2015-09-09</date><risdate>2015</risdate><volume>92</volume><issue>6</issue><artnum>064011</artnum><issn>1550-7998</issn><issn>2470-0010</issn><eissn>1550-2368</eissn><eissn>2470-0029</eissn><abstract>The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.</abstract><doi>10.1103/PhysRevD.92.064011</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-7998 |
ispartof | Physical review. D, 2015-09, Vol.92 (6), Article 064011 |
issn | 1550-7998 2470-0010 1550-2368 2470-0029 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786217373 |
source | American Physical Society Journals |
subjects | Bayesian analysis Data processing Data transmission Density Dirichlet problem Gravitational waves Noise Spectra |
title | Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20semiparametric%20power%20spectral%20density%20estimation%20with%20applications%20in%20gravitational%20wave%20data%20analysis&rft.jtitle=Physical%20review.%20D&rft.au=Edwards,%20Matthew%20C.&rft.date=2015-09-09&rft.volume=92&rft.issue=6&rft.artnum=064011&rft.issn=1550-7998&rft.eissn=1550-2368&rft_id=info:doi/10.1103/PhysRevD.92.064011&rft_dat=%3Cproquest_cross%3E1786217373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786217373&rft_id=info:pmid/&rfr_iscdi=true |