Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis

The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified paramet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2015-09, Vol.92 (6), Article 064011
Hauptverfasser: Edwards, Matthew C., Meyer, Renate, Christensen, Nelson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physical review. D
container_volume 92
creator Edwards, Matthew C.
Meyer, Renate
Christensen, Nelson
description The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.
doi_str_mv 10.1103/PhysRevD.92.064011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786217373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786217373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-7dacfffa92080bb703f38d459785ff1e6642379af5bdd4323cf0431a79517f433</originalsourceid><addsrcrecordid>eNo1kElPwzAQhSMEEqXwBzj5yCXFSxLHRyirVAmE4GxNHZsaZcPjtsq_J104zbzRm9GbL0muGZ0xRsXt-2rAD7t5mCk-o0VGGTtJJizPacpFUZ4ee6lUeZ5cIP5QKngh5STp7mGw6KElaBvfQ4DGxuAN6butDQR7a2KAmlS2RR8HYjH6BqLvWrL1cUWg72tv9gMkviXfATY-7vW4tYWNJRVEIDDKAT1eJmcOarRXxzpNvp4eP-cv6eLt-XV-t0iN4FlMZQXGOQeK05Iul5IKJ8oqy5Usc-eYLYqMC6nA5cuqygQXxtFMMJAqZ9JlQkyTm8PdPnS_6zG1bjwaW9fQ2m6Nmsmy4EwKubPyg9WEDjFYp_sw_hgGzaje0dX_dLXi-kBX_AFYenJ3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786217373</pqid></control><display><type>article</type><title>Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis</title><source>American Physical Society Journals</source><creator>Edwards, Matthew C. ; Meyer, Renate ; Christensen, Nelson</creator><creatorcontrib>Edwards, Matthew C. ; Meyer, Renate ; Christensen, Nelson</creatorcontrib><description>The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.</description><identifier>ISSN: 1550-7998</identifier><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 1550-2368</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.92.064011</identifier><language>eng</language><subject>Bayesian analysis ; Data processing ; Data transmission ; Density ; Dirichlet problem ; Gravitational waves ; Noise ; Spectra</subject><ispartof>Physical review. D, 2015-09, Vol.92 (6), Article 064011</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-7dacfffa92080bb703f38d459785ff1e6642379af5bdd4323cf0431a79517f433</citedby><cites>FETCH-LOGICAL-c324t-7dacfffa92080bb703f38d459785ff1e6642379af5bdd4323cf0431a79517f433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Edwards, Matthew C.</creatorcontrib><creatorcontrib>Meyer, Renate</creatorcontrib><creatorcontrib>Christensen, Nelson</creatorcontrib><title>Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis</title><title>Physical review. D</title><description>The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.</description><subject>Bayesian analysis</subject><subject>Data processing</subject><subject>Data transmission</subject><subject>Density</subject><subject>Dirichlet problem</subject><subject>Gravitational waves</subject><subject>Noise</subject><subject>Spectra</subject><issn>1550-7998</issn><issn>2470-0010</issn><issn>1550-2368</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kElPwzAQhSMEEqXwBzj5yCXFSxLHRyirVAmE4GxNHZsaZcPjtsq_J104zbzRm9GbL0muGZ0xRsXt-2rAD7t5mCk-o0VGGTtJJizPacpFUZ4ee6lUeZ5cIP5QKngh5STp7mGw6KElaBvfQ4DGxuAN6butDQR7a2KAmlS2RR8HYjH6BqLvWrL1cUWg72tv9gMkviXfATY-7vW4tYWNJRVEIDDKAT1eJmcOarRXxzpNvp4eP-cv6eLt-XV-t0iN4FlMZQXGOQeK05Iul5IKJ8oqy5Usc-eYLYqMC6nA5cuqygQXxtFMMJAqZ9JlQkyTm8PdPnS_6zG1bjwaW9fQ2m6Nmsmy4EwKubPyg9WEDjFYp_sw_hgGzaje0dX_dLXi-kBX_AFYenJ3</recordid><startdate>20150909</startdate><enddate>20150909</enddate><creator>Edwards, Matthew C.</creator><creator>Meyer, Renate</creator><creator>Christensen, Nelson</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150909</creationdate><title>Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis</title><author>Edwards, Matthew C. ; Meyer, Renate ; Christensen, Nelson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-7dacfffa92080bb703f38d459785ff1e6642379af5bdd4323cf0431a79517f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayesian analysis</topic><topic>Data processing</topic><topic>Data transmission</topic><topic>Density</topic><topic>Dirichlet problem</topic><topic>Gravitational waves</topic><topic>Noise</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edwards, Matthew C.</creatorcontrib><creatorcontrib>Meyer, Renate</creatorcontrib><creatorcontrib>Christensen, Nelson</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edwards, Matthew C.</au><au>Meyer, Renate</au><au>Christensen, Nelson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis</atitle><jtitle>Physical review. D</jtitle><date>2015-09-09</date><risdate>2015</risdate><volume>92</volume><issue>6</issue><artnum>064011</artnum><issn>1550-7998</issn><issn>2470-0010</issn><eissn>1550-2368</eissn><eissn>2470-0029</eissn><abstract>The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.</abstract><doi>10.1103/PhysRevD.92.064011</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1550-7998
ispartof Physical review. D, 2015-09, Vol.92 (6), Article 064011
issn 1550-7998
2470-0010
1550-2368
2470-0029
language eng
recordid cdi_proquest_miscellaneous_1786217373
source American Physical Society Journals
subjects Bayesian analysis
Data processing
Data transmission
Density
Dirichlet problem
Gravitational waves
Noise
Spectra
title Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20semiparametric%20power%20spectral%20density%20estimation%20with%20applications%20in%20gravitational%20wave%20data%20analysis&rft.jtitle=Physical%20review.%20D&rft.au=Edwards,%20Matthew%20C.&rft.date=2015-09-09&rft.volume=92&rft.issue=6&rft.artnum=064011&rft.issn=1550-7998&rft.eissn=1550-2368&rft_id=info:doi/10.1103/PhysRevD.92.064011&rft_dat=%3Cproquest_cross%3E1786217373%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786217373&rft_id=info:pmid/&rfr_iscdi=true