Ultrafast quenching of the exchange interaction in a Mott insulator

We investigate how fast and how effective photocarrier excitation can modify the exchange interaction J_{ex} in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of J_{ex} both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-08, Vol.113 (5), p.057201-057201, Article 057201
Hauptverfasser: Mentink, J H, Eckstein, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 057201
container_issue 5
container_start_page 057201
container_title Physical review letters
container_volume 113
creator Mentink, J H
Eckstein, M
description We investigate how fast and how effective photocarrier excitation can modify the exchange interaction J_{ex} in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of J_{ex} both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simulating laser-induced spin precession in an antiferromagnet that is canted by an external magnetic field. In both cases, the electron dynamics is obtained from nonequilibrium dynamical mean-field theory. We find that the modified J_{ex} emerges already within a few electron hopping times after the pulse, with a reduction that is comparable to the effect of chemical doping.
doi_str_mv 10.1103/physrevlett.113.057201
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786217212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1553705823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-d1627b6bade455f1afc11e3d6bb184885e572168887cc822a1f65dd5c960c22c3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwC1WWbFJm7PjRJap4SUUgRNeR4zhNUJoU26no32PUwpbVXI3uncchZIowQwR2s6333tlda0OIDTYDLingCRkjyHkqEbNTMgZgmM4B5IhceP8BAEiFOicjyqOYMzYmi1UbnK60D8nnYDtTN9066ask1DaxX6bW3domTRes0yY0fRd1opPnPoSo_NDq0LtLclbp1turY52Q1f3d--IxXb48PC1ul6nJuAppiYLKQhS6tBnnFerKIFpWiqJAlSnFbfwBhVJKGqMo1VgJXpbczAUYSg2bkOvD3K3r47E-5JvGG9u2urP94HOUSlCMM-j_Vs6ZBK4oi1ZxsBrX-8i0yreu2Wi3zxHyH9b5a2T9ZnfLyDo2WH5gHYPT446h2NjyL_YLl30DH759OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553705823</pqid></control><display><type>article</type><title>Ultrafast quenching of the exchange interaction in a Mott insulator</title><source>American Physical Society Journals</source><creator>Mentink, J H ; Eckstein, M</creator><creatorcontrib>Mentink, J H ; Eckstein, M</creatorcontrib><description>We investigate how fast and how effective photocarrier excitation can modify the exchange interaction J_{ex} in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of J_{ex} both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simulating laser-induced spin precession in an antiferromagnet that is canted by an external magnetic field. In both cases, the electron dynamics is obtained from nonequilibrium dynamical mean-field theory. We find that the modified J_{ex} emerges already within a few electron hopping times after the pulse, with a reduction that is comparable to the effect of chemical doping.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.113.057201</identifier><identifier>PMID: 25126933</identifier><language>eng</language><publisher>United States</publisher><subject>Exchange ; Filing ; Formalism ; Insulators ; Magnetic fields ; Precession ; Quenching ; Simulation</subject><ispartof>Physical review letters, 2014-08, Vol.113 (5), p.057201-057201, Article 057201</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-d1627b6bade455f1afc11e3d6bb184885e572168887cc822a1f65dd5c960c22c3</citedby><cites>FETCH-LOGICAL-c458t-d1627b6bade455f1afc11e3d6bb184885e572168887cc822a1f65dd5c960c22c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25126933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mentink, J H</creatorcontrib><creatorcontrib>Eckstein, M</creatorcontrib><title>Ultrafast quenching of the exchange interaction in a Mott insulator</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We investigate how fast and how effective photocarrier excitation can modify the exchange interaction J_{ex} in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of J_{ex} both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simulating laser-induced spin precession in an antiferromagnet that is canted by an external magnetic field. In both cases, the electron dynamics is obtained from nonequilibrium dynamical mean-field theory. We find that the modified J_{ex} emerges already within a few electron hopping times after the pulse, with a reduction that is comparable to the effect of chemical doping.</description><subject>Exchange</subject><subject>Filing</subject><subject>Formalism</subject><subject>Insulators</subject><subject>Magnetic fields</subject><subject>Precession</subject><subject>Quenching</subject><subject>Simulation</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqXwC1WWbFJm7PjRJap4SUUgRNeR4zhNUJoU26no32PUwpbVXI3uncchZIowQwR2s6333tlda0OIDTYDLingCRkjyHkqEbNTMgZgmM4B5IhceP8BAEiFOicjyqOYMzYmi1UbnK60D8nnYDtTN9066ask1DaxX6bW3domTRes0yY0fRd1opPnPoSo_NDq0LtLclbp1turY52Q1f3d--IxXb48PC1ul6nJuAppiYLKQhS6tBnnFerKIFpWiqJAlSnFbfwBhVJKGqMo1VgJXpbczAUYSg2bkOvD3K3r47E-5JvGG9u2urP94HOUSlCMM-j_Vs6ZBK4oi1ZxsBrX-8i0yreu2Wi3zxHyH9b5a2T9ZnfLyDo2WH5gHYPT446h2NjyL_YLl30DH759OA</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Mentink, J H</creator><creator>Eckstein, M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Ultrafast quenching of the exchange interaction in a Mott insulator</title><author>Mentink, J H ; Eckstein, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-d1627b6bade455f1afc11e3d6bb184885e572168887cc822a1f65dd5c960c22c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Exchange</topic><topic>Filing</topic><topic>Formalism</topic><topic>Insulators</topic><topic>Magnetic fields</topic><topic>Precession</topic><topic>Quenching</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mentink, J H</creatorcontrib><creatorcontrib>Eckstein, M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mentink, J H</au><au>Eckstein, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast quenching of the exchange interaction in a Mott insulator</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>113</volume><issue>5</issue><spage>057201</spage><epage>057201</epage><pages>057201-057201</pages><artnum>057201</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We investigate how fast and how effective photocarrier excitation can modify the exchange interaction J_{ex} in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of J_{ex} both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simulating laser-induced spin precession in an antiferromagnet that is canted by an external magnetic field. In both cases, the electron dynamics is obtained from nonequilibrium dynamical mean-field theory. We find that the modified J_{ex} emerges already within a few electron hopping times after the pulse, with a reduction that is comparable to the effect of chemical doping.</abstract><cop>United States</cop><pmid>25126933</pmid><doi>10.1103/physrevlett.113.057201</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2014-08, Vol.113 (5), p.057201-057201, Article 057201
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1786217212
source American Physical Society Journals
subjects Exchange
Filing
Formalism
Insulators
Magnetic fields
Precession
Quenching
Simulation
title Ultrafast quenching of the exchange interaction in a Mott insulator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20quenching%20of%20the%20exchange%20interaction%20in%20a%20Mott%20insulator&rft.jtitle=Physical%20review%20letters&rft.au=Mentink,%20J%20H&rft.date=2014-08-01&rft.volume=113&rft.issue=5&rft.spage=057201&rft.epage=057201&rft.pages=057201-057201&rft.artnum=057201&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.113.057201&rft_dat=%3Cproquest_cross%3E1553705823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553705823&rft_id=info:pmid/25126933&rfr_iscdi=true