Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection

To recognize expressions accurately, facial expression systems require robust feature extraction and feature selection methods. In this paper, a normalized mutual information based feature selection technique is proposed for FER systems. The technique is derived from an existing method, that is, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2016-01, Vol.75 (2), p.935-959
Hauptverfasser: Siddiqi, Muhammad Hameed, Ali, Rahman, Idris, Muhammad, Khan, Adil Mehmood, Kim, Eun Soo, Whang, Min Cheol, Lee, Sungyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 959
container_issue 2
container_start_page 935
container_title Multimedia tools and applications
container_volume 75
creator Siddiqi, Muhammad Hameed
Ali, Rahman
Idris, Muhammad
Khan, Adil Mehmood
Kim, Eun Soo
Whang, Min Cheol
Lee, Sungyoung
description To recognize expressions accurately, facial expression systems require robust feature extraction and feature selection methods. In this paper, a normalized mutual information based feature selection technique is proposed for FER systems. The technique is derived from an existing method, that is, the max-relevance and min-redundancy (mRMR) method. We, however, propose to normalize the mutual information used in this method so that the domination of the relevance or of the redundancy can be eliminated. For feature extraction, curvelet transform is used. After the feature extraction and selection the feature space is reduced by employing linear discriminant analysis (LDA). Finally, hidden Markov model (HMM) is used to recognize the expressions. The proposed FER system (CNF-FER) is validated using four publicly available standard datasets. For each dataset, 10-fold cross validation scheme is utilized. CNF-FER outperformed the existing well-known statistical and state-of-the-art methods by achieving a weighted average recognition rate of 99 % across all the datasets.
doi_str_mv 10.1007/s11042-014-2333-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786215836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3939981571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-f0848638de78c278bb040d3e3f7637f5c60a8a2299c63bfedf0bb445b3cfe4f63</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhosouK7-AG8FL16q-WqSPcqirrDgRc8hTSdLlzZdk0Zcf73pVkEETzMMz_My8GbZJUY3GCFxGzBGjBQIs4JQSgt6lM1wKWghBMHHaacSFaJE-DQ7C2GLEOYlYbNsv4qddrnVptFtDh87DyE0vcs9mH7jmmHcY2jcJjfRv0MLQ25BD9FDogevzYHQrs5d7zvdNp9Q510cYoprnB1vB-JHCini4JxnJ1a3AS6-5zx7fbh_Wa6K9fPj0_JuXRiGF0NhkWSSU1mDkIYIWVWIoZoCtYJTYUvDkZaakMXCcFpZqC2qKsbKihoLzHI6z66n3J3v3yKEQXVNMNC22kEfg8JCcoJLSUf06g-67aN36btEcSxpiUiZKDxRxvcheLBq55tO-73CSI1lqKkMlcpQYxmKJodMTkis24D_lfyv9AV0wI93</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761835025</pqid></control><display><type>article</type><title>Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Siddiqi, Muhammad Hameed ; Ali, Rahman ; Idris, Muhammad ; Khan, Adil Mehmood ; Kim, Eun Soo ; Whang, Min Cheol ; Lee, Sungyoung</creator><creatorcontrib>Siddiqi, Muhammad Hameed ; Ali, Rahman ; Idris, Muhammad ; Khan, Adil Mehmood ; Kim, Eun Soo ; Whang, Min Cheol ; Lee, Sungyoung</creatorcontrib><description>To recognize expressions accurately, facial expression systems require robust feature extraction and feature selection methods. In this paper, a normalized mutual information based feature selection technique is proposed for FER systems. The technique is derived from an existing method, that is, the max-relevance and min-redundancy (mRMR) method. We, however, propose to normalize the mutual information used in this method so that the domination of the relevance or of the redundancy can be eliminated. For feature extraction, curvelet transform is used. After the feature extraction and selection the feature space is reduced by employing linear discriminant analysis (LDA). Finally, hidden Markov model (HMM) is used to recognize the expressions. The proposed FER system (CNF-FER) is validated using four publicly available standard datasets. For each dataset, 10-fold cross validation scheme is utilized. CNF-FER outperformed the existing well-known statistical and state-of-the-art methods by achieving a weighted average recognition rate of 99 % across all the datasets.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-014-2333-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Access control ; Computer Communication Networks ; Computer engineering ; Computer Science ; Data Structures and Information Theory ; Datasets ; Discriminant analysis ; Face ; Face recognition ; Feature extraction ; Feature recognition ; Feature selection ; Human ; Lattice theory ; Linear programming ; Markov models ; Methods ; Multimedia ; Multimedia Information Systems ; Pattern recognition ; Recognition ; Special Purpose and Application-Based Systems ; Statistical analysis</subject><ispartof>Multimedia tools and applications, 2016-01, Vol.75 (2), p.935-959</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-f0848638de78c278bb040d3e3f7637f5c60a8a2299c63bfedf0bb445b3cfe4f63</citedby><cites>FETCH-LOGICAL-c419t-f0848638de78c278bb040d3e3f7637f5c60a8a2299c63bfedf0bb445b3cfe4f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-014-2333-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-014-2333-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Siddiqi, Muhammad Hameed</creatorcontrib><creatorcontrib>Ali, Rahman</creatorcontrib><creatorcontrib>Idris, Muhammad</creatorcontrib><creatorcontrib>Khan, Adil Mehmood</creatorcontrib><creatorcontrib>Kim, Eun Soo</creatorcontrib><creatorcontrib>Whang, Min Cheol</creatorcontrib><creatorcontrib>Lee, Sungyoung</creatorcontrib><title>Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>To recognize expressions accurately, facial expression systems require robust feature extraction and feature selection methods. In this paper, a normalized mutual information based feature selection technique is proposed for FER systems. The technique is derived from an existing method, that is, the max-relevance and min-redundancy (mRMR) method. We, however, propose to normalize the mutual information used in this method so that the domination of the relevance or of the redundancy can be eliminated. For feature extraction, curvelet transform is used. After the feature extraction and selection the feature space is reduced by employing linear discriminant analysis (LDA). Finally, hidden Markov model (HMM) is used to recognize the expressions. The proposed FER system (CNF-FER) is validated using four publicly available standard datasets. For each dataset, 10-fold cross validation scheme is utilized. CNF-FER outperformed the existing well-known statistical and state-of-the-art methods by achieving a weighted average recognition rate of 99 % across all the datasets.</description><subject>Access control</subject><subject>Computer Communication Networks</subject><subject>Computer engineering</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Discriminant analysis</subject><subject>Face</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Feature selection</subject><subject>Human</subject><subject>Lattice theory</subject><subject>Linear programming</subject><subject>Markov models</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Pattern recognition</subject><subject>Recognition</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Statistical analysis</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1LxDAQhosouK7-AG8FL16q-WqSPcqirrDgRc8hTSdLlzZdk0Zcf73pVkEETzMMz_My8GbZJUY3GCFxGzBGjBQIs4JQSgt6lM1wKWghBMHHaacSFaJE-DQ7C2GLEOYlYbNsv4qddrnVptFtDh87DyE0vcs9mH7jmmHcY2jcJjfRv0MLQ25BD9FDogevzYHQrs5d7zvdNp9Q510cYoprnB1vB-JHCini4JxnJ1a3AS6-5zx7fbh_Wa6K9fPj0_JuXRiGF0NhkWSSU1mDkIYIWVWIoZoCtYJTYUvDkZaakMXCcFpZqC2qKsbKihoLzHI6z66n3J3v3yKEQXVNMNC22kEfg8JCcoJLSUf06g-67aN36btEcSxpiUiZKDxRxvcheLBq55tO-73CSI1lqKkMlcpQYxmKJodMTkis24D_lfyv9AV0wI93</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Siddiqi, Muhammad Hameed</creator><creator>Ali, Rahman</creator><creator>Idris, Muhammad</creator><creator>Khan, Adil Mehmood</creator><creator>Kim, Eun Soo</creator><creator>Whang, Min Cheol</creator><creator>Lee, Sungyoung</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection</title><author>Siddiqi, Muhammad Hameed ; Ali, Rahman ; Idris, Muhammad ; Khan, Adil Mehmood ; Kim, Eun Soo ; Whang, Min Cheol ; Lee, Sungyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-f0848638de78c278bb040d3e3f7637f5c60a8a2299c63bfedf0bb445b3cfe4f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Access control</topic><topic>Computer Communication Networks</topic><topic>Computer engineering</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Discriminant analysis</topic><topic>Face</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Feature selection</topic><topic>Human</topic><topic>Lattice theory</topic><topic>Linear programming</topic><topic>Markov models</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Pattern recognition</topic><topic>Recognition</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddiqi, Muhammad Hameed</creatorcontrib><creatorcontrib>Ali, Rahman</creatorcontrib><creatorcontrib>Idris, Muhammad</creatorcontrib><creatorcontrib>Khan, Adil Mehmood</creatorcontrib><creatorcontrib>Kim, Eun Soo</creatorcontrib><creatorcontrib>Whang, Min Cheol</creatorcontrib><creatorcontrib>Lee, Sungyoung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siddiqi, Muhammad Hameed</au><au>Ali, Rahman</au><au>Idris, Muhammad</au><au>Khan, Adil Mehmood</au><au>Kim, Eun Soo</au><au>Whang, Min Cheol</au><au>Lee, Sungyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>75</volume><issue>2</issue><spage>935</spage><epage>959</epage><pages>935-959</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>To recognize expressions accurately, facial expression systems require robust feature extraction and feature selection methods. In this paper, a normalized mutual information based feature selection technique is proposed for FER systems. The technique is derived from an existing method, that is, the max-relevance and min-redundancy (mRMR) method. We, however, propose to normalize the mutual information used in this method so that the domination of the relevance or of the redundancy can be eliminated. For feature extraction, curvelet transform is used. After the feature extraction and selection the feature space is reduced by employing linear discriminant analysis (LDA). Finally, hidden Markov model (HMM) is used to recognize the expressions. The proposed FER system (CNF-FER) is validated using four publicly available standard datasets. For each dataset, 10-fold cross validation scheme is utilized. CNF-FER outperformed the existing well-known statistical and state-of-the-art methods by achieving a weighted average recognition rate of 99 % across all the datasets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-014-2333-3</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2016-01, Vol.75 (2), p.935-959
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_miscellaneous_1786215836
source SpringerLink Journals - AutoHoldings
subjects Access control
Computer Communication Networks
Computer engineering
Computer Science
Data Structures and Information Theory
Datasets
Discriminant analysis
Face
Face recognition
Feature extraction
Feature recognition
Feature selection
Human
Lattice theory
Linear programming
Markov models
Methods
Multimedia
Multimedia Information Systems
Pattern recognition
Recognition
Special Purpose and Application-Based Systems
Statistical analysis
title Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20facial%20expression%20recognition%20using%20curvelet%20feature%20extraction%20and%20normalized%20mutual%20information%20feature%20selection&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Siddiqi,%20Muhammad%20Hameed&rft.date=2016-01-01&rft.volume=75&rft.issue=2&rft.spage=935&rft.epage=959&rft.pages=935-959&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-014-2333-3&rft_dat=%3Cproquest_cross%3E3939981571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761835025&rft_id=info:pmid/&rfr_iscdi=true