Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection
To recognize expressions accurately, facial expression systems require robust feature extraction and feature selection methods. In this paper, a normalized mutual information based feature selection technique is proposed for FER systems. The technique is derived from an existing method, that is, the...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2016-01, Vol.75 (2), p.935-959 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 959 |
---|---|
container_issue | 2 |
container_start_page | 935 |
container_title | Multimedia tools and applications |
container_volume | 75 |
creator | Siddiqi, Muhammad Hameed Ali, Rahman Idris, Muhammad Khan, Adil Mehmood Kim, Eun Soo Whang, Min Cheol Lee, Sungyoung |
description | To recognize expressions accurately, facial expression systems require robust feature extraction and feature selection methods. In this paper, a normalized mutual information based feature selection technique is proposed for FER systems. The technique is derived from an existing method, that is, the max-relevance and min-redundancy (mRMR) method. We, however, propose to normalize the mutual information used in this method so that the domination of the relevance or of the redundancy can be eliminated. For feature extraction, curvelet transform is used. After the feature extraction and selection the feature space is reduced by employing linear discriminant analysis (LDA). Finally, hidden Markov model (HMM) is used to recognize the expressions. The proposed FER system (CNF-FER) is validated using four publicly available standard datasets. For each dataset, 10-fold cross validation scheme is utilized. CNF-FER outperformed the existing well-known statistical and state-of-the-art methods by achieving a weighted average recognition rate of 99 % across all the datasets. |
doi_str_mv | 10.1007/s11042-014-2333-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786215836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3939981571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-f0848638de78c278bb040d3e3f7637f5c60a8a2299c63bfedf0bb445b3cfe4f63</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhosouK7-AG8FL16q-WqSPcqirrDgRc8hTSdLlzZdk0Zcf73pVkEETzMMz_My8GbZJUY3GCFxGzBGjBQIs4JQSgt6lM1wKWghBMHHaacSFaJE-DQ7C2GLEOYlYbNsv4qddrnVptFtDh87DyE0vcs9mH7jmmHcY2jcJjfRv0MLQ25BD9FDogevzYHQrs5d7zvdNp9Q510cYoprnB1vB-JHCini4JxnJ1a3AS6-5zx7fbh_Wa6K9fPj0_JuXRiGF0NhkWSSU1mDkIYIWVWIoZoCtYJTYUvDkZaakMXCcFpZqC2qKsbKihoLzHI6z66n3J3v3yKEQXVNMNC22kEfg8JCcoJLSUf06g-67aN36btEcSxpiUiZKDxRxvcheLBq55tO-73CSI1lqKkMlcpQYxmKJodMTkis24D_lfyv9AV0wI93</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761835025</pqid></control><display><type>article</type><title>Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Siddiqi, Muhammad Hameed ; Ali, Rahman ; Idris, Muhammad ; Khan, Adil Mehmood ; Kim, Eun Soo ; Whang, Min Cheol ; Lee, Sungyoung</creator><creatorcontrib>Siddiqi, Muhammad Hameed ; Ali, Rahman ; Idris, Muhammad ; Khan, Adil Mehmood ; Kim, Eun Soo ; Whang, Min Cheol ; Lee, Sungyoung</creatorcontrib><description>To recognize expressions accurately, facial expression systems require robust feature extraction and feature selection methods. In this paper, a normalized mutual information based feature selection technique is proposed for FER systems. The technique is derived from an existing method, that is, the max-relevance and min-redundancy (mRMR) method. We, however, propose to normalize the mutual information used in this method so that the domination of the relevance or of the redundancy can be eliminated. For feature extraction, curvelet transform is used. After the feature extraction and selection the feature space is reduced by employing linear discriminant analysis (LDA). Finally, hidden Markov model (HMM) is used to recognize the expressions. The proposed FER system (CNF-FER) is validated using four publicly available standard datasets. For each dataset, 10-fold cross validation scheme is utilized. CNF-FER outperformed the existing well-known statistical and state-of-the-art methods by achieving a weighted average recognition rate of 99 % across all the datasets.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-014-2333-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Access control ; Computer Communication Networks ; Computer engineering ; Computer Science ; Data Structures and Information Theory ; Datasets ; Discriminant analysis ; Face ; Face recognition ; Feature extraction ; Feature recognition ; Feature selection ; Human ; Lattice theory ; Linear programming ; Markov models ; Methods ; Multimedia ; Multimedia Information Systems ; Pattern recognition ; Recognition ; Special Purpose and Application-Based Systems ; Statistical analysis</subject><ispartof>Multimedia tools and applications, 2016-01, Vol.75 (2), p.935-959</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-f0848638de78c278bb040d3e3f7637f5c60a8a2299c63bfedf0bb445b3cfe4f63</citedby><cites>FETCH-LOGICAL-c419t-f0848638de78c278bb040d3e3f7637f5c60a8a2299c63bfedf0bb445b3cfe4f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-014-2333-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-014-2333-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Siddiqi, Muhammad Hameed</creatorcontrib><creatorcontrib>Ali, Rahman</creatorcontrib><creatorcontrib>Idris, Muhammad</creatorcontrib><creatorcontrib>Khan, Adil Mehmood</creatorcontrib><creatorcontrib>Kim, Eun Soo</creatorcontrib><creatorcontrib>Whang, Min Cheol</creatorcontrib><creatorcontrib>Lee, Sungyoung</creatorcontrib><title>Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>To recognize expressions accurately, facial expression systems require robust feature extraction and feature selection methods. In this paper, a normalized mutual information based feature selection technique is proposed for FER systems. The technique is derived from an existing method, that is, the max-relevance and min-redundancy (mRMR) method. We, however, propose to normalize the mutual information used in this method so that the domination of the relevance or of the redundancy can be eliminated. For feature extraction, curvelet transform is used. After the feature extraction and selection the feature space is reduced by employing linear discriminant analysis (LDA). Finally, hidden Markov model (HMM) is used to recognize the expressions. The proposed FER system (CNF-FER) is validated using four publicly available standard datasets. For each dataset, 10-fold cross validation scheme is utilized. CNF-FER outperformed the existing well-known statistical and state-of-the-art methods by achieving a weighted average recognition rate of 99 % across all the datasets.</description><subject>Access control</subject><subject>Computer Communication Networks</subject><subject>Computer engineering</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Discriminant analysis</subject><subject>Face</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Feature selection</subject><subject>Human</subject><subject>Lattice theory</subject><subject>Linear programming</subject><subject>Markov models</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Pattern recognition</subject><subject>Recognition</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Statistical analysis</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1LxDAQhosouK7-AG8FL16q-WqSPcqirrDgRc8hTSdLlzZdk0Zcf73pVkEETzMMz_My8GbZJUY3GCFxGzBGjBQIs4JQSgt6lM1wKWghBMHHaacSFaJE-DQ7C2GLEOYlYbNsv4qddrnVptFtDh87DyE0vcs9mH7jmmHcY2jcJjfRv0MLQ25BD9FDogevzYHQrs5d7zvdNp9Q510cYoprnB1vB-JHCini4JxnJ1a3AS6-5zx7fbh_Wa6K9fPj0_JuXRiGF0NhkWSSU1mDkIYIWVWIoZoCtYJTYUvDkZaakMXCcFpZqC2qKsbKihoLzHI6z66n3J3v3yKEQXVNMNC22kEfg8JCcoJLSUf06g-67aN36btEcSxpiUiZKDxRxvcheLBq55tO-73CSI1lqKkMlcpQYxmKJodMTkis24D_lfyv9AV0wI93</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Siddiqi, Muhammad Hameed</creator><creator>Ali, Rahman</creator><creator>Idris, Muhammad</creator><creator>Khan, Adil Mehmood</creator><creator>Kim, Eun Soo</creator><creator>Whang, Min Cheol</creator><creator>Lee, Sungyoung</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection</title><author>Siddiqi, Muhammad Hameed ; Ali, Rahman ; Idris, Muhammad ; Khan, Adil Mehmood ; Kim, Eun Soo ; Whang, Min Cheol ; Lee, Sungyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-f0848638de78c278bb040d3e3f7637f5c60a8a2299c63bfedf0bb445b3cfe4f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Access control</topic><topic>Computer Communication Networks</topic><topic>Computer engineering</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Discriminant analysis</topic><topic>Face</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Feature selection</topic><topic>Human</topic><topic>Lattice theory</topic><topic>Linear programming</topic><topic>Markov models</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Pattern recognition</topic><topic>Recognition</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siddiqi, Muhammad Hameed</creatorcontrib><creatorcontrib>Ali, Rahman</creatorcontrib><creatorcontrib>Idris, Muhammad</creatorcontrib><creatorcontrib>Khan, Adil Mehmood</creatorcontrib><creatorcontrib>Kim, Eun Soo</creatorcontrib><creatorcontrib>Whang, Min Cheol</creatorcontrib><creatorcontrib>Lee, Sungyoung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siddiqi, Muhammad Hameed</au><au>Ali, Rahman</au><au>Idris, Muhammad</au><au>Khan, Adil Mehmood</au><au>Kim, Eun Soo</au><au>Whang, Min Cheol</au><au>Lee, Sungyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>75</volume><issue>2</issue><spage>935</spage><epage>959</epage><pages>935-959</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>To recognize expressions accurately, facial expression systems require robust feature extraction and feature selection methods. In this paper, a normalized mutual information based feature selection technique is proposed for FER systems. The technique is derived from an existing method, that is, the max-relevance and min-redundancy (mRMR) method. We, however, propose to normalize the mutual information used in this method so that the domination of the relevance or of the redundancy can be eliminated. For feature extraction, curvelet transform is used. After the feature extraction and selection the feature space is reduced by employing linear discriminant analysis (LDA). Finally, hidden Markov model (HMM) is used to recognize the expressions. The proposed FER system (CNF-FER) is validated using four publicly available standard datasets. For each dataset, 10-fold cross validation scheme is utilized. CNF-FER outperformed the existing well-known statistical and state-of-the-art methods by achieving a weighted average recognition rate of 99 % across all the datasets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-014-2333-3</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2016-01, Vol.75 (2), p.935-959 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786215836 |
source | SpringerLink Journals - AutoHoldings |
subjects | Access control Computer Communication Networks Computer engineering Computer Science Data Structures and Information Theory Datasets Discriminant analysis Face Face recognition Feature extraction Feature recognition Feature selection Human Lattice theory Linear programming Markov models Methods Multimedia Multimedia Information Systems Pattern recognition Recognition Special Purpose and Application-Based Systems Statistical analysis |
title | Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Human%20facial%20expression%20recognition%20using%20curvelet%20feature%20extraction%20and%20normalized%20mutual%20information%20feature%20selection&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Siddiqi,%20Muhammad%20Hameed&rft.date=2016-01-01&rft.volume=75&rft.issue=2&rft.spage=935&rft.epage=959&rft.pages=935-959&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-014-2333-3&rft_dat=%3Cproquest_cross%3E3939981571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761835025&rft_id=info:pmid/&rfr_iscdi=true |