Localization from semantic observations via the matrix permanent

Most approaches to robot localization rely on low-level geometric features such as points, lines, and planes. In this paper, we use object recognition to obtain semantic information from the robot’s sensors and consider the task of localizing the robot within a prior map of landmarks, which are anno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2016-01, Vol.35 (1-3), p.73-99
Hauptverfasser: Atanasov, Nikolay, Zhu, Menglong, Daniilidis, Kostas, Pappas, George J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1-3
container_start_page 73
container_title The International journal of robotics research
container_volume 35
creator Atanasov, Nikolay
Zhu, Menglong
Daniilidis, Kostas
Pappas, George J.
description Most approaches to robot localization rely on low-level geometric features such as points, lines, and planes. In this paper, we use object recognition to obtain semantic information from the robot’s sensors and consider the task of localizing the robot within a prior map of landmarks, which are annotated with semantic labels. As object recognition algorithms miss detections and produce false alarms, correct data association between the detections and the landmarks on the map is central to the semantic localization problem. Instead of the traditional vector-based representation, we propose a sensor model, which encodes the semantic observations via random finite sets and enables a unified treatment of missed detections, false alarms, and data association. Our second contribution is to reduce the problem of computing the likelihood of a set-valued observation to the problem of computing a matrix permanent. It is this crucial transformation that allows us to solve the semantic localization problem with a polynomial-time approximation to the set-based Bayes filter. Finally, we address the active semantic localization problem, in which the observer’s trajectory is planned in order to improve the accuracy and efficiency of the localization process. The performance of our approach is demonstrated in simulation and in real environments using deformable-part-model-based object detectors. Robust global localization from semantic observations is demonstrated for a mobile robot, for the Project Tango phone, and on the KITTI visual odometry dataset. Comparisons are made with the traditional lidar-based geometric Monte Carlo localization.
doi_str_mv 10.1177/0278364915596589
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786214286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0278364915596589</sage_id><sourcerecordid>1898547191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-6c2e6f0c1bb8dcae3a58c6b69b8080863569daefe26f1bd718fc433fd5c5576d3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKt3jwtevKxmNpuvm1L8goIXPS_ZbKIpu5uapEX9602tBykoAzOH95vH4yF0CvgCgPNLXHFBWC2BUsmokHtoAryGkgBn-2iykcuNfoiOYlxgjAnDcoKu5l6r3n2q5PxY2OCHIppBjcnpwrfRhPW3Eou1U0V6NcWgUnDvxdKETJkxHaMDq_poTn7uFD3f3jzN7sv5493D7HpeagoylUxXhlmsoW1Fp5UhigrNWiZbgfMwQpnslLGmYhbajoOwuibEdlRTyllHpuh867sM_m1lYmoGF7Xp-5zCr2IDXLAK6ipbTdHZDrrwqzDmdA0IKWjNQcK_FGdQUZJXpvCW0sHHGIxtlsENKnw0gJtN8c1u8fml3L5E9WJ-mf7FfwFn7YHB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761253612</pqid></control><display><type>article</type><title>Localization from semantic observations via the matrix permanent</title><source>SAGE Complete A-Z List</source><creator>Atanasov, Nikolay ; Zhu, Menglong ; Daniilidis, Kostas ; Pappas, George J.</creator><creatorcontrib>Atanasov, Nikolay ; Zhu, Menglong ; Daniilidis, Kostas ; Pappas, George J.</creatorcontrib><description>Most approaches to robot localization rely on low-level geometric features such as points, lines, and planes. In this paper, we use object recognition to obtain semantic information from the robot’s sensors and consider the task of localizing the robot within a prior map of landmarks, which are annotated with semantic labels. As object recognition algorithms miss detections and produce false alarms, correct data association between the detections and the landmarks on the map is central to the semantic localization problem. Instead of the traditional vector-based representation, we propose a sensor model, which encodes the semantic observations via random finite sets and enables a unified treatment of missed detections, false alarms, and data association. Our second contribution is to reduce the problem of computing the likelihood of a set-valued observation to the problem of computing a matrix permanent. It is this crucial transformation that allows us to solve the semantic localization problem with a polynomial-time approximation to the set-based Bayes filter. Finally, we address the active semantic localization problem, in which the observer’s trajectory is planned in order to improve the accuracy and efficiency of the localization process. The performance of our approach is demonstrated in simulation and in real environments using deformable-part-model-based object detectors. Robust global localization from semantic observations is demonstrated for a mobile robot, for the Project Tango phone, and on the KITTI visual odometry dataset. Comparisons are made with the traditional lidar-based geometric Monte Carlo localization.</description><identifier>ISSN: 0278-3649</identifier><identifier>EISSN: 1741-3176</identifier><identifier>DOI: 10.1177/0278364915596589</identifier><identifier>CODEN: IJRREL</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Alarms ; Approximation ; Bayesian analysis ; Computation ; Computer simulation ; Deformation ; Detectors ; False alarms ; Formability ; Landmarks ; Lidar ; Localization ; Mathematical analysis ; Monte Carlo simulation ; Object recognition ; Odometers ; Planes ; Polynomials ; Position (location) ; Robotics ; Robots ; Semantics</subject><ispartof>The International journal of robotics research, 2016-01, Vol.35 (1-3), p.73-99</ispartof><rights>The Author(s) 2015</rights><rights>Copyright SAGE PUBLICATIONS, INC. Jan-Mar 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-6c2e6f0c1bb8dcae3a58c6b69b8080863569daefe26f1bd718fc433fd5c5576d3</citedby><cites>FETCH-LOGICAL-c519t-6c2e6f0c1bb8dcae3a58c6b69b8080863569daefe26f1bd718fc433fd5c5576d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0278364915596589$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0278364915596589$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids></links><search><creatorcontrib>Atanasov, Nikolay</creatorcontrib><creatorcontrib>Zhu, Menglong</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><creatorcontrib>Pappas, George J.</creatorcontrib><title>Localization from semantic observations via the matrix permanent</title><title>The International journal of robotics research</title><description>Most approaches to robot localization rely on low-level geometric features such as points, lines, and planes. In this paper, we use object recognition to obtain semantic information from the robot’s sensors and consider the task of localizing the robot within a prior map of landmarks, which are annotated with semantic labels. As object recognition algorithms miss detections and produce false alarms, correct data association between the detections and the landmarks on the map is central to the semantic localization problem. Instead of the traditional vector-based representation, we propose a sensor model, which encodes the semantic observations via random finite sets and enables a unified treatment of missed detections, false alarms, and data association. Our second contribution is to reduce the problem of computing the likelihood of a set-valued observation to the problem of computing a matrix permanent. It is this crucial transformation that allows us to solve the semantic localization problem with a polynomial-time approximation to the set-based Bayes filter. Finally, we address the active semantic localization problem, in which the observer’s trajectory is planned in order to improve the accuracy and efficiency of the localization process. The performance of our approach is demonstrated in simulation and in real environments using deformable-part-model-based object detectors. Robust global localization from semantic observations is demonstrated for a mobile robot, for the Project Tango phone, and on the KITTI visual odometry dataset. Comparisons are made with the traditional lidar-based geometric Monte Carlo localization.</description><subject>Alarms</subject><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Detectors</subject><subject>False alarms</subject><subject>Formability</subject><subject>Landmarks</subject><subject>Lidar</subject><subject>Localization</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Object recognition</subject><subject>Odometers</subject><subject>Planes</subject><subject>Polynomials</subject><subject>Position (location)</subject><subject>Robotics</subject><subject>Robots</subject><subject>Semantics</subject><issn>0278-3649</issn><issn>1741-3176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKt3jwtevKxmNpuvm1L8goIXPS_ZbKIpu5uapEX9602tBykoAzOH95vH4yF0CvgCgPNLXHFBWC2BUsmokHtoAryGkgBn-2iykcuNfoiOYlxgjAnDcoKu5l6r3n2q5PxY2OCHIppBjcnpwrfRhPW3Eou1U0V6NcWgUnDvxdKETJkxHaMDq_poTn7uFD3f3jzN7sv5493D7HpeagoylUxXhlmsoW1Fp5UhigrNWiZbgfMwQpnslLGmYhbajoOwuibEdlRTyllHpuh867sM_m1lYmoGF7Xp-5zCr2IDXLAK6ipbTdHZDrrwqzDmdA0IKWjNQcK_FGdQUZJXpvCW0sHHGIxtlsENKnw0gJtN8c1u8fml3L5E9WJ-mf7FfwFn7YHB</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Atanasov, Nikolay</creator><creator>Zhu, Menglong</creator><creator>Daniilidis, Kostas</creator><creator>Pappas, George J.</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20160101</creationdate><title>Localization from semantic observations via the matrix permanent</title><author>Atanasov, Nikolay ; Zhu, Menglong ; Daniilidis, Kostas ; Pappas, George J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-6c2e6f0c1bb8dcae3a58c6b69b8080863569daefe26f1bd718fc433fd5c5576d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Alarms</topic><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Detectors</topic><topic>False alarms</topic><topic>Formability</topic><topic>Landmarks</topic><topic>Lidar</topic><topic>Localization</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Object recognition</topic><topic>Odometers</topic><topic>Planes</topic><topic>Polynomials</topic><topic>Position (location)</topic><topic>Robotics</topic><topic>Robots</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atanasov, Nikolay</creatorcontrib><creatorcontrib>Zhu, Menglong</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><creatorcontrib>Pappas, George J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>The International journal of robotics research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atanasov, Nikolay</au><au>Zhu, Menglong</au><au>Daniilidis, Kostas</au><au>Pappas, George J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localization from semantic observations via the matrix permanent</atitle><jtitle>The International journal of robotics research</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>35</volume><issue>1-3</issue><spage>73</spage><epage>99</epage><pages>73-99</pages><issn>0278-3649</issn><eissn>1741-3176</eissn><coden>IJRREL</coden><abstract>Most approaches to robot localization rely on low-level geometric features such as points, lines, and planes. In this paper, we use object recognition to obtain semantic information from the robot’s sensors and consider the task of localizing the robot within a prior map of landmarks, which are annotated with semantic labels. As object recognition algorithms miss detections and produce false alarms, correct data association between the detections and the landmarks on the map is central to the semantic localization problem. Instead of the traditional vector-based representation, we propose a sensor model, which encodes the semantic observations via random finite sets and enables a unified treatment of missed detections, false alarms, and data association. Our second contribution is to reduce the problem of computing the likelihood of a set-valued observation to the problem of computing a matrix permanent. It is this crucial transformation that allows us to solve the semantic localization problem with a polynomial-time approximation to the set-based Bayes filter. Finally, we address the active semantic localization problem, in which the observer’s trajectory is planned in order to improve the accuracy and efficiency of the localization process. The performance of our approach is demonstrated in simulation and in real environments using deformable-part-model-based object detectors. Robust global localization from semantic observations is demonstrated for a mobile robot, for the Project Tango phone, and on the KITTI visual odometry dataset. Comparisons are made with the traditional lidar-based geometric Monte Carlo localization.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0278364915596589</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-3649
ispartof The International journal of robotics research, 2016-01, Vol.35 (1-3), p.73-99
issn 0278-3649
1741-3176
language eng
recordid cdi_proquest_miscellaneous_1786214286
source SAGE Complete A-Z List
subjects Alarms
Approximation
Bayesian analysis
Computation
Computer simulation
Deformation
Detectors
False alarms
Formability
Landmarks
Lidar
Localization
Mathematical analysis
Monte Carlo simulation
Object recognition
Odometers
Planes
Polynomials
Position (location)
Robotics
Robots
Semantics
title Localization from semantic observations via the matrix permanent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localization%20from%20semantic%20observations%20via%20the%20matrix%20permanent&rft.jtitle=The%20International%20journal%20of%20robotics%20research&rft.au=Atanasov,%20Nikolay&rft.date=2016-01-01&rft.volume=35&rft.issue=1-3&rft.spage=73&rft.epage=99&rft.pages=73-99&rft.issn=0278-3649&rft.eissn=1741-3176&rft.coden=IJRREL&rft_id=info:doi/10.1177/0278364915596589&rft_dat=%3Cproquest_cross%3E1898547191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761253612&rft_id=info:pmid/&rft_sage_id=10.1177_0278364915596589&rfr_iscdi=true