A fourth-order approximation of fractional derivatives with its applications

A new fourth-order difference approximation is derived for the space fractional derivatives by using the weighted average of the shifted Grünwald formulae combining the compact technique. The properties of proposed fractional difference quotient operator are presented and proved. Then the new approx...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2015-01, Vol.281, p.787-805
Hauptverfasser: Hao, Zhao-peng, Sun, Zhi-zhong, Cao, Wan-rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 805
container_issue
container_start_page 787
container_title Journal of computational physics
container_volume 281
creator Hao, Zhao-peng
Sun, Zhi-zhong
Cao, Wan-rong
description A new fourth-order difference approximation is derived for the space fractional derivatives by using the weighted average of the shifted Grünwald formulae combining the compact technique. The properties of proposed fractional difference quotient operator are presented and proved. Then the new approximation formula is applied to solve the space fractional diffusion equations. By the energy method, the proposed quasi-compact difference scheme is proved to be unconditionally stable and convergent in L2 norm for both 1D and 2D cases. Several numerical examples are given to confirm the theoretical results.
doi_str_mv 10.1016/j.jcp.2014.10.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786213619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999114007414</els_id><sourcerecordid>1786213619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-a3b355d25c07eecfec456ccb821a81a0a8fdba72e9cc9537e0f5d49aa47e51d83</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMcHcMuRS8o6jpNYnKqKl1SJC5wtd7NWHaV1sNMCf49DOXPax8ysdoaxGw5zDry66-YdDvMCeJnmOUhxwmYcFORFzatTNgMoeK6U4ufsIsYOABpZNjO2WmTW78O4yX1oKWRmGIL_clszOr_LvM1sMDj1ps8S7g4JOFDMPt24ydwYJ0Hv8Jcer9iZNX2k6796yd4fH96Wz_nq9elluVjlKASMuRFrIWVbSISaCC1hKSvEdVNw03ADprHt2tQFKUQlRU1gZVsqY8qaJG8bccluj3fTrx97iqPeuojU92ZHfh81r5uq4KLiKlH5kYrBxxjI6iEkd-Fbc9BTcrrTKTk9JTetUnJJc3_UUPJwcBR0REc7pNYFwlG33v2j_gFNIXhL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786213619</pqid></control><display><type>article</type><title>A fourth-order approximation of fractional derivatives with its applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Hao, Zhao-peng ; Sun, Zhi-zhong ; Cao, Wan-rong</creator><creatorcontrib>Hao, Zhao-peng ; Sun, Zhi-zhong ; Cao, Wan-rong</creatorcontrib><description>A new fourth-order difference approximation is derived for the space fractional derivatives by using the weighted average of the shifted Grünwald formulae combining the compact technique. The properties of proposed fractional difference quotient operator are presented and proved. Then the new approximation formula is applied to solve the space fractional diffusion equations. By the energy method, the proposed quasi-compact difference scheme is proved to be unconditionally stable and convergent in L2 norm for both 1D and 2D cases. Several numerical examples are given to confirm the theoretical results.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2014.10.053</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Approximation ; Derivatives ; Diffusion ; Energy methods ; Fractional derivative ; Fractional differential equation ; High-order approximation ; Mathematical analysis ; Mathematical models ; Norms ; Quasi-compact difference scheme ; Two dimensional</subject><ispartof>Journal of computational physics, 2015-01, Vol.281, p.787-805</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-a3b355d25c07eecfec456ccb821a81a0a8fdba72e9cc9537e0f5d49aa47e51d83</citedby><cites>FETCH-LOGICAL-c330t-a3b355d25c07eecfec456ccb821a81a0a8fdba72e9cc9537e0f5d49aa47e51d83</cites><orcidid>0000-0003-2980-6166 ; 0000-0003-2994-1368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999114007414$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hao, Zhao-peng</creatorcontrib><creatorcontrib>Sun, Zhi-zhong</creatorcontrib><creatorcontrib>Cao, Wan-rong</creatorcontrib><title>A fourth-order approximation of fractional derivatives with its applications</title><title>Journal of computational physics</title><description>A new fourth-order difference approximation is derived for the space fractional derivatives by using the weighted average of the shifted Grünwald formulae combining the compact technique. The properties of proposed fractional difference quotient operator are presented and proved. Then the new approximation formula is applied to solve the space fractional diffusion equations. By the energy method, the proposed quasi-compact difference scheme is proved to be unconditionally stable and convergent in L2 norm for both 1D and 2D cases. Several numerical examples are given to confirm the theoretical results.</description><subject>Approximation</subject><subject>Derivatives</subject><subject>Diffusion</subject><subject>Energy methods</subject><subject>Fractional derivative</subject><subject>Fractional differential equation</subject><subject>High-order approximation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Norms</subject><subject>Quasi-compact difference scheme</subject><subject>Two dimensional</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMcHcMuRS8o6jpNYnKqKl1SJC5wtd7NWHaV1sNMCf49DOXPax8ysdoaxGw5zDry66-YdDvMCeJnmOUhxwmYcFORFzatTNgMoeK6U4ufsIsYOABpZNjO2WmTW78O4yX1oKWRmGIL_clszOr_LvM1sMDj1ps8S7g4JOFDMPt24ydwYJ0Hv8Jcer9iZNX2k6796yd4fH96Wz_nq9elluVjlKASMuRFrIWVbSISaCC1hKSvEdVNw03ADprHt2tQFKUQlRU1gZVsqY8qaJG8bccluj3fTrx97iqPeuojU92ZHfh81r5uq4KLiKlH5kYrBxxjI6iEkd-Fbc9BTcrrTKTk9JTetUnJJc3_UUPJwcBR0REc7pNYFwlG33v2j_gFNIXhL</recordid><startdate>20150115</startdate><enddate>20150115</enddate><creator>Hao, Zhao-peng</creator><creator>Sun, Zhi-zhong</creator><creator>Cao, Wan-rong</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2980-6166</orcidid><orcidid>https://orcid.org/0000-0003-2994-1368</orcidid></search><sort><creationdate>20150115</creationdate><title>A fourth-order approximation of fractional derivatives with its applications</title><author>Hao, Zhao-peng ; Sun, Zhi-zhong ; Cao, Wan-rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-a3b355d25c07eecfec456ccb821a81a0a8fdba72e9cc9537e0f5d49aa47e51d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation</topic><topic>Derivatives</topic><topic>Diffusion</topic><topic>Energy methods</topic><topic>Fractional derivative</topic><topic>Fractional differential equation</topic><topic>High-order approximation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Norms</topic><topic>Quasi-compact difference scheme</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Zhao-peng</creatorcontrib><creatorcontrib>Sun, Zhi-zhong</creatorcontrib><creatorcontrib>Cao, Wan-rong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Zhao-peng</au><au>Sun, Zhi-zhong</au><au>Cao, Wan-rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fourth-order approximation of fractional derivatives with its applications</atitle><jtitle>Journal of computational physics</jtitle><date>2015-01-15</date><risdate>2015</risdate><volume>281</volume><spage>787</spage><epage>805</epage><pages>787-805</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A new fourth-order difference approximation is derived for the space fractional derivatives by using the weighted average of the shifted Grünwald formulae combining the compact technique. The properties of proposed fractional difference quotient operator are presented and proved. Then the new approximation formula is applied to solve the space fractional diffusion equations. By the energy method, the proposed quasi-compact difference scheme is proved to be unconditionally stable and convergent in L2 norm for both 1D and 2D cases. Several numerical examples are given to confirm the theoretical results.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2014.10.053</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2980-6166</orcidid><orcidid>https://orcid.org/0000-0003-2994-1368</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2015-01, Vol.281, p.787-805
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1786213619
source Elsevier ScienceDirect Journals Complete
subjects Approximation
Derivatives
Diffusion
Energy methods
Fractional derivative
Fractional differential equation
High-order approximation
Mathematical analysis
Mathematical models
Norms
Quasi-compact difference scheme
Two dimensional
title A fourth-order approximation of fractional derivatives with its applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fourth-order%20approximation%20of%20fractional%20derivatives%20with%20its%20applications&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Hao,%20Zhao-peng&rft.date=2015-01-15&rft.volume=281&rft.spage=787&rft.epage=805&rft.pages=787-805&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2014.10.053&rft_dat=%3Cproquest_cross%3E1786213619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786213619&rft_id=info:pmid/&rft_els_id=S0021999114007414&rfr_iscdi=true