Tight lower bound for percolation threshold on an infinite graph
We construct a tight lower bound for the site percolation threshold on an infinite graph, which becomes exact for an infinite tree. The bound is given by the inverse of the maximal eigenvalue of the Hashimoto matrix used to count nonbacktracking walks on the original graph. Our bound always exceeds...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-11, Vol.113 (20), p.208701-208701, Article 208701 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208701 |
---|---|
container_issue | 20 |
container_start_page | 208701 |
container_title | Physical review letters |
container_volume | 113 |
creator | Hamilton, Kathleen E Pryadko, Leonid P |
description | We construct a tight lower bound for the site percolation threshold on an infinite graph, which becomes exact for an infinite tree. The bound is given by the inverse of the maximal eigenvalue of the Hashimoto matrix used to count nonbacktracking walks on the original graph. Our bound always exceeds the inverse spectral radius of the graph's adjacency matrix, and it is also generally tighter than the existing bound in terms of the maximum degree. We give a constructive proof for existence of such an eigenvalue in the case of a connected infinite quasitransitive graph, a graph-theoretic analog of a translationally invariant system. |
doi_str_mv | 10.1103/physrevlett.113.208701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786213368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629334709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-2644a3c02912851ca0a435912b5307be60fe2a0038654dc9844b5e3e50de169a3</originalsourceid><addsrcrecordid>eNqFkEtLxEAQhAdRdH38hSVHL9HueSW5KeILFhRZz2GSdDaRbCbOzCr77x1Z9eqpqaKqu_kYmyNcIIK4nLqtd_QxUAjREBcc8gxwj80QsiLNEOU-mwEITAuA7Igde_8GAMh1fsiOuJKCg8pn7GrZr7qQDPaTXFLZzdgkrXXJRK62gwm9HZPQOfKdHZokCjMm_dj2Yx8oWTkzdafsoDWDp7OfecJe726XNw_p4un-8eZ6kdYKMaRcS2lEDbxAniusDRgpVBSVEpBVpKElbuLDuVayqYtcykqRIAUNoS6MOGHnu72Ts-8b8qFc976mYTAj2Y0vMcs1RyF0_n9U80IImUERo3oXrZ31EWhbTq5fG7ctEcpv0OVzBP1CH4sIOhqi3IGOxfnPjU21puav9ktWfAFhp3sG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629334709</pqid></control><display><type>article</type><title>Tight lower bound for percolation threshold on an infinite graph</title><source>American Physical Society Journals</source><creator>Hamilton, Kathleen E ; Pryadko, Leonid P</creator><creatorcontrib>Hamilton, Kathleen E ; Pryadko, Leonid P</creatorcontrib><description>We construct a tight lower bound for the site percolation threshold on an infinite graph, which becomes exact for an infinite tree. The bound is given by the inverse of the maximal eigenvalue of the Hashimoto matrix used to count nonbacktracking walks on the original graph. Our bound always exceeds the inverse spectral radius of the graph's adjacency matrix, and it is also generally tighter than the existing bound in terms of the maximum degree. We give a constructive proof for existence of such an eigenvalue in the case of a connected infinite quasitransitive graph, a graph-theoretic analog of a translationally invariant system.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.113.208701</identifier><identifier>PMID: 25432058</identifier><language>eng</language><publisher>United States</publisher><subject>Construction ; Eigenvalues ; Graphs ; Inverse ; Lower bounds ; Percolation ; Spectra ; Thresholds</subject><ispartof>Physical review letters, 2014-11, Vol.113 (20), p.208701-208701, Article 208701</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-2644a3c02912851ca0a435912b5307be60fe2a0038654dc9844b5e3e50de169a3</citedby><cites>FETCH-LOGICAL-c511t-2644a3c02912851ca0a435912b5307be60fe2a0038654dc9844b5e3e50de169a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25432058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamilton, Kathleen E</creatorcontrib><creatorcontrib>Pryadko, Leonid P</creatorcontrib><title>Tight lower bound for percolation threshold on an infinite graph</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We construct a tight lower bound for the site percolation threshold on an infinite graph, which becomes exact for an infinite tree. The bound is given by the inverse of the maximal eigenvalue of the Hashimoto matrix used to count nonbacktracking walks on the original graph. Our bound always exceeds the inverse spectral radius of the graph's adjacency matrix, and it is also generally tighter than the existing bound in terms of the maximum degree. We give a constructive proof for existence of such an eigenvalue in the case of a connected infinite quasitransitive graph, a graph-theoretic analog of a translationally invariant system.</description><subject>Construction</subject><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Inverse</subject><subject>Lower bounds</subject><subject>Percolation</subject><subject>Spectra</subject><subject>Thresholds</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxEAQhAdRdH38hSVHL9HueSW5KeILFhRZz2GSdDaRbCbOzCr77x1Z9eqpqaKqu_kYmyNcIIK4nLqtd_QxUAjREBcc8gxwj80QsiLNEOU-mwEITAuA7Igde_8GAMh1fsiOuJKCg8pn7GrZr7qQDPaTXFLZzdgkrXXJRK62gwm9HZPQOfKdHZokCjMm_dj2Yx8oWTkzdafsoDWDp7OfecJe726XNw_p4un-8eZ6kdYKMaRcS2lEDbxAniusDRgpVBSVEpBVpKElbuLDuVayqYtcykqRIAUNoS6MOGHnu72Ts-8b8qFc976mYTAj2Y0vMcs1RyF0_n9U80IImUERo3oXrZ31EWhbTq5fG7ctEcpv0OVzBP1CH4sIOhqi3IGOxfnPjU21puav9ktWfAFhp3sG</recordid><startdate>20141114</startdate><enddate>20141114</enddate><creator>Hamilton, Kathleen E</creator><creator>Pryadko, Leonid P</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141114</creationdate><title>Tight lower bound for percolation threshold on an infinite graph</title><author>Hamilton, Kathleen E ; Pryadko, Leonid P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-2644a3c02912851ca0a435912b5307be60fe2a0038654dc9844b5e3e50de169a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Construction</topic><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Inverse</topic><topic>Lower bounds</topic><topic>Percolation</topic><topic>Spectra</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, Kathleen E</creatorcontrib><creatorcontrib>Pryadko, Leonid P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamilton, Kathleen E</au><au>Pryadko, Leonid P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight lower bound for percolation threshold on an infinite graph</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2014-11-14</date><risdate>2014</risdate><volume>113</volume><issue>20</issue><spage>208701</spage><epage>208701</epage><pages>208701-208701</pages><artnum>208701</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We construct a tight lower bound for the site percolation threshold on an infinite graph, which becomes exact for an infinite tree. The bound is given by the inverse of the maximal eigenvalue of the Hashimoto matrix used to count nonbacktracking walks on the original graph. Our bound always exceeds the inverse spectral radius of the graph's adjacency matrix, and it is also generally tighter than the existing bound in terms of the maximum degree. We give a constructive proof for existence of such an eigenvalue in the case of a connected infinite quasitransitive graph, a graph-theoretic analog of a translationally invariant system.</abstract><cop>United States</cop><pmid>25432058</pmid><doi>10.1103/physrevlett.113.208701</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2014-11, Vol.113 (20), p.208701-208701, Article 208701 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786213368 |
source | American Physical Society Journals |
subjects | Construction Eigenvalues Graphs Inverse Lower bounds Percolation Spectra Thresholds |
title | Tight lower bound for percolation threshold on an infinite graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20lower%20bound%20for%20percolation%20threshold%20on%20an%20infinite%20graph&rft.jtitle=Physical%20review%20letters&rft.au=Hamilton,%20Kathleen%20E&rft.date=2014-11-14&rft.volume=113&rft.issue=20&rft.spage=208701&rft.epage=208701&rft.pages=208701-208701&rft.artnum=208701&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.113.208701&rft_dat=%3Cproquest_cross%3E1629334709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629334709&rft_id=info:pmid/25432058&rfr_iscdi=true |