Tight lower bound for percolation threshold on an infinite graph

We construct a tight lower bound for the site percolation threshold on an infinite graph, which becomes exact for an infinite tree. The bound is given by the inverse of the maximal eigenvalue of the Hashimoto matrix used to count nonbacktracking walks on the original graph. Our bound always exceeds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-11, Vol.113 (20), p.208701-208701, Article 208701
Hauptverfasser: Hamilton, Kathleen E, Pryadko, Leonid P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208701
container_issue 20
container_start_page 208701
container_title Physical review letters
container_volume 113
creator Hamilton, Kathleen E
Pryadko, Leonid P
description We construct a tight lower bound for the site percolation threshold on an infinite graph, which becomes exact for an infinite tree. The bound is given by the inverse of the maximal eigenvalue of the Hashimoto matrix used to count nonbacktracking walks on the original graph. Our bound always exceeds the inverse spectral radius of the graph's adjacency matrix, and it is also generally tighter than the existing bound in terms of the maximum degree. We give a constructive proof for existence of such an eigenvalue in the case of a connected infinite quasitransitive graph, a graph-theoretic analog of a translationally invariant system.
doi_str_mv 10.1103/physrevlett.113.208701
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786213368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1629334709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-2644a3c02912851ca0a435912b5307be60fe2a0038654dc9844b5e3e50de169a3</originalsourceid><addsrcrecordid>eNqFkEtLxEAQhAdRdH38hSVHL9HueSW5KeILFhRZz2GSdDaRbCbOzCr77x1Z9eqpqaKqu_kYmyNcIIK4nLqtd_QxUAjREBcc8gxwj80QsiLNEOU-mwEITAuA7Igde_8GAMh1fsiOuJKCg8pn7GrZr7qQDPaTXFLZzdgkrXXJRK62gwm9HZPQOfKdHZokCjMm_dj2Yx8oWTkzdafsoDWDp7OfecJe726XNw_p4un-8eZ6kdYKMaRcS2lEDbxAniusDRgpVBSVEpBVpKElbuLDuVayqYtcykqRIAUNoS6MOGHnu72Ts-8b8qFc976mYTAj2Y0vMcs1RyF0_n9U80IImUERo3oXrZ31EWhbTq5fG7ctEcpv0OVzBP1CH4sIOhqi3IGOxfnPjU21puav9ktWfAFhp3sG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629334709</pqid></control><display><type>article</type><title>Tight lower bound for percolation threshold on an infinite graph</title><source>American Physical Society Journals</source><creator>Hamilton, Kathleen E ; Pryadko, Leonid P</creator><creatorcontrib>Hamilton, Kathleen E ; Pryadko, Leonid P</creatorcontrib><description>We construct a tight lower bound for the site percolation threshold on an infinite graph, which becomes exact for an infinite tree. The bound is given by the inverse of the maximal eigenvalue of the Hashimoto matrix used to count nonbacktracking walks on the original graph. Our bound always exceeds the inverse spectral radius of the graph's adjacency matrix, and it is also generally tighter than the existing bound in terms of the maximum degree. We give a constructive proof for existence of such an eigenvalue in the case of a connected infinite quasitransitive graph, a graph-theoretic analog of a translationally invariant system.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.113.208701</identifier><identifier>PMID: 25432058</identifier><language>eng</language><publisher>United States</publisher><subject>Construction ; Eigenvalues ; Graphs ; Inverse ; Lower bounds ; Percolation ; Spectra ; Thresholds</subject><ispartof>Physical review letters, 2014-11, Vol.113 (20), p.208701-208701, Article 208701</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-2644a3c02912851ca0a435912b5307be60fe2a0038654dc9844b5e3e50de169a3</citedby><cites>FETCH-LOGICAL-c511t-2644a3c02912851ca0a435912b5307be60fe2a0038654dc9844b5e3e50de169a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25432058$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamilton, Kathleen E</creatorcontrib><creatorcontrib>Pryadko, Leonid P</creatorcontrib><title>Tight lower bound for percolation threshold on an infinite graph</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We construct a tight lower bound for the site percolation threshold on an infinite graph, which becomes exact for an infinite tree. The bound is given by the inverse of the maximal eigenvalue of the Hashimoto matrix used to count nonbacktracking walks on the original graph. Our bound always exceeds the inverse spectral radius of the graph's adjacency matrix, and it is also generally tighter than the existing bound in terms of the maximum degree. We give a constructive proof for existence of such an eigenvalue in the case of a connected infinite quasitransitive graph, a graph-theoretic analog of a translationally invariant system.</description><subject>Construction</subject><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Inverse</subject><subject>Lower bounds</subject><subject>Percolation</subject><subject>Spectra</subject><subject>Thresholds</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxEAQhAdRdH38hSVHL9HueSW5KeILFhRZz2GSdDaRbCbOzCr77x1Z9eqpqaKqu_kYmyNcIIK4nLqtd_QxUAjREBcc8gxwj80QsiLNEOU-mwEITAuA7Igde_8GAMh1fsiOuJKCg8pn7GrZr7qQDPaTXFLZzdgkrXXJRK62gwm9HZPQOfKdHZokCjMm_dj2Yx8oWTkzdafsoDWDp7OfecJe726XNw_p4un-8eZ6kdYKMaRcS2lEDbxAniusDRgpVBSVEpBVpKElbuLDuVayqYtcykqRIAUNoS6MOGHnu72Ts-8b8qFc976mYTAj2Y0vMcs1RyF0_n9U80IImUERo3oXrZ31EWhbTq5fG7ctEcpv0OVzBP1CH4sIOhqi3IGOxfnPjU21puav9ktWfAFhp3sG</recordid><startdate>20141114</startdate><enddate>20141114</enddate><creator>Hamilton, Kathleen E</creator><creator>Pryadko, Leonid P</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141114</creationdate><title>Tight lower bound for percolation threshold on an infinite graph</title><author>Hamilton, Kathleen E ; Pryadko, Leonid P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-2644a3c02912851ca0a435912b5307be60fe2a0038654dc9844b5e3e50de169a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Construction</topic><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Inverse</topic><topic>Lower bounds</topic><topic>Percolation</topic><topic>Spectra</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamilton, Kathleen E</creatorcontrib><creatorcontrib>Pryadko, Leonid P</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamilton, Kathleen E</au><au>Pryadko, Leonid P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight lower bound for percolation threshold on an infinite graph</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2014-11-14</date><risdate>2014</risdate><volume>113</volume><issue>20</issue><spage>208701</spage><epage>208701</epage><pages>208701-208701</pages><artnum>208701</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We construct a tight lower bound for the site percolation threshold on an infinite graph, which becomes exact for an infinite tree. The bound is given by the inverse of the maximal eigenvalue of the Hashimoto matrix used to count nonbacktracking walks on the original graph. Our bound always exceeds the inverse spectral radius of the graph's adjacency matrix, and it is also generally tighter than the existing bound in terms of the maximum degree. We give a constructive proof for existence of such an eigenvalue in the case of a connected infinite quasitransitive graph, a graph-theoretic analog of a translationally invariant system.</abstract><cop>United States</cop><pmid>25432058</pmid><doi>10.1103/physrevlett.113.208701</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2014-11, Vol.113 (20), p.208701-208701, Article 208701
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1786213368
source American Physical Society Journals
subjects Construction
Eigenvalues
Graphs
Inverse
Lower bounds
Percolation
Spectra
Thresholds
title Tight lower bound for percolation threshold on an infinite graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20lower%20bound%20for%20percolation%20threshold%20on%20an%20infinite%20graph&rft.jtitle=Physical%20review%20letters&rft.au=Hamilton,%20Kathleen%20E&rft.date=2014-11-14&rft.volume=113&rft.issue=20&rft.spage=208701&rft.epage=208701&rft.pages=208701-208701&rft.artnum=208701&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.113.208701&rft_dat=%3Cproquest_cross%3E1629334709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629334709&rft_id=info:pmid/25432058&rfr_iscdi=true