Quantum data compression of a qubit ensemble
Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories....
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-10, Vol.113 (16), p.160504-160504 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 160504 |
---|---|
container_issue | 16 |
container_start_page | 160504 |
container_title | Physical review letters |
container_volume | 113 |
creator | Rozema, Lee A Mahler, Dylan H Hayat, Alex Turner, Peter S Steinberg, Aephraim M |
description | Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compressing three photonic qubits into two. This protocol sheds light on the subtle differences between quantum and classical information. Furthermore, since data compression stores all of the available information about the quantum state in fewer physical qubits, it could allow for a vast reduction in the amount of quantum memory required to store a quantum ensemble, making even today's limited quantum memories far more powerful than previously recognized. |
doi_str_mv | 10.1103/PhysRevLett.113.160504 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786210693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786210693</sourcerecordid><originalsourceid>FETCH-LOGICAL-p174t-db3d80b01b5b22475e68ead5152bea36ff9526bd542a6bad68b0b243a4f948c33</originalsourceid><addsrcrecordid>eNqNkEtLw0AUhQdRbI3-hZKlC1PvnVeSpRSrQsAHug4zmRuM5NXMROi_t2Dduzpw-PjgHMZWCGtEELcvn3v_Rt8FhXAoxBo1KJAnbImQ5kmKKE_ZEkBgkgOkC3bh_RcAINfZOVtwJTRyKZfs5nU2fZi72Jlg4mroxom8b4Y-HurYxLvZNiGm3lNnW7pkZ7VpPV0dM2If2_v3zWNSPD88be6KZMRUhsRZ4TKwgFZZzmWqSGdknELFLRmh6zpXXFunJDfaGqczC5ZLYWSdy6wSImLXv95xGnYz-VB2ja-obU1Pw-xLTDPNEXT-D1RjLlCow-KIrY7obDty5Tg1nZn25d8Z4gedZmJa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1619313525</pqid></control><display><type>article</type><title>Quantum data compression of a qubit ensemble</title><source>American Physical Society Journals</source><creator>Rozema, Lee A ; Mahler, Dylan H ; Hayat, Alex ; Turner, Peter S ; Steinberg, Aephraim M</creator><creatorcontrib>Rozema, Lee A ; Mahler, Dylan H ; Hayat, Alex ; Turner, Peter S ; Steinberg, Aephraim M</creatorcontrib><description>Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compressing three photonic qubits into two. This protocol sheds light on the subtle differences between quantum and classical information. Furthermore, since data compression stores all of the available information about the quantum state in fewer physical qubits, it could allow for a vast reduction in the amount of quantum memory required to store a quantum ensemble, making even today's limited quantum memories far more powerful than previously recognized.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.113.160504</identifier><identifier>PMID: 25361244</identifier><language>eng</language><publisher>United States</publisher><subject>Algorithms ; Compressed ; Compressing ; Data compression ; Data storage ; Information technology ; Qubits (quantum computing) ; Stores</subject><ispartof>Physical review letters, 2014-10, Vol.113 (16), p.160504-160504</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25361244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rozema, Lee A</creatorcontrib><creatorcontrib>Mahler, Dylan H</creatorcontrib><creatorcontrib>Hayat, Alex</creatorcontrib><creatorcontrib>Turner, Peter S</creatorcontrib><creatorcontrib>Steinberg, Aephraim M</creatorcontrib><title>Quantum data compression of a qubit ensemble</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compressing three photonic qubits into two. This protocol sheds light on the subtle differences between quantum and classical information. Furthermore, since data compression stores all of the available information about the quantum state in fewer physical qubits, it could allow for a vast reduction in the amount of quantum memory required to store a quantum ensemble, making even today's limited quantum memories far more powerful than previously recognized.</description><subject>Algorithms</subject><subject>Compressed</subject><subject>Compressing</subject><subject>Data compression</subject><subject>Data storage</subject><subject>Information technology</subject><subject>Qubits (quantum computing)</subject><subject>Stores</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLw0AUhQdRbI3-hZKlC1PvnVeSpRSrQsAHug4zmRuM5NXMROi_t2Dduzpw-PjgHMZWCGtEELcvn3v_Rt8FhXAoxBo1KJAnbImQ5kmKKE_ZEkBgkgOkC3bh_RcAINfZOVtwJTRyKZfs5nU2fZi72Jlg4mroxom8b4Y-HurYxLvZNiGm3lNnW7pkZ7VpPV0dM2If2_v3zWNSPD88be6KZMRUhsRZ4TKwgFZZzmWqSGdknELFLRmh6zpXXFunJDfaGqczC5ZLYWSdy6wSImLXv95xGnYz-VB2ja-obU1Pw-xLTDPNEXT-D1RjLlCow-KIrY7obDty5Tg1nZn25d8Z4gedZmJa</recordid><startdate>20141017</startdate><enddate>20141017</enddate><creator>Rozema, Lee A</creator><creator>Mahler, Dylan H</creator><creator>Hayat, Alex</creator><creator>Turner, Peter S</creator><creator>Steinberg, Aephraim M</creator><scope>NPM</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141017</creationdate><title>Quantum data compression of a qubit ensemble</title><author>Rozema, Lee A ; Mahler, Dylan H ; Hayat, Alex ; Turner, Peter S ; Steinberg, Aephraim M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p174t-db3d80b01b5b22475e68ead5152bea36ff9526bd542a6bad68b0b243a4f948c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Compressed</topic><topic>Compressing</topic><topic>Data compression</topic><topic>Data storage</topic><topic>Information technology</topic><topic>Qubits (quantum computing)</topic><topic>Stores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rozema, Lee A</creatorcontrib><creatorcontrib>Mahler, Dylan H</creatorcontrib><creatorcontrib>Hayat, Alex</creatorcontrib><creatorcontrib>Turner, Peter S</creatorcontrib><creatorcontrib>Steinberg, Aephraim M</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rozema, Lee A</au><au>Mahler, Dylan H</au><au>Hayat, Alex</au><au>Turner, Peter S</au><au>Steinberg, Aephraim M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum data compression of a qubit ensemble</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2014-10-17</date><risdate>2014</risdate><volume>113</volume><issue>16</issue><spage>160504</spage><epage>160504</epage><pages>160504-160504</pages><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Data compression is a ubiquitous aspect of modern information technology, and the advent of quantum information raises the question of what types of compression are feasible for quantum data, where it is especially relevant given the extreme difficulty involved in creating reliable quantum memories. We present a protocol in which an ensemble of quantum bits (qubits) can in principle be perfectly compressed into exponentially fewer qubits. We then experimentally implement our algorithm, compressing three photonic qubits into two. This protocol sheds light on the subtle differences between quantum and classical information. Furthermore, since data compression stores all of the available information about the quantum state in fewer physical qubits, it could allow for a vast reduction in the amount of quantum memory required to store a quantum ensemble, making even today's limited quantum memories far more powerful than previously recognized.</abstract><cop>United States</cop><pmid>25361244</pmid><doi>10.1103/PhysRevLett.113.160504</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2014-10, Vol.113 (16), p.160504-160504 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786210693 |
source | American Physical Society Journals |
subjects | Algorithms Compressed Compressing Data compression Data storage Information technology Qubits (quantum computing) Stores |
title | Quantum data compression of a qubit ensemble |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A43%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20data%20compression%20of%20a%20qubit%20ensemble&rft.jtitle=Physical%20review%20letters&rft.au=Rozema,%20Lee%20A&rft.date=2014-10-17&rft.volume=113&rft.issue=16&rft.spage=160504&rft.epage=160504&rft.pages=160504-160504&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.113.160504&rft_dat=%3Cproquest_pubme%3E1786210693%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1619313525&rft_id=info:pmid/25361244&rfr_iscdi=true |