Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer
In previous studies, it has proved difficult to realize periodic graphene ripples with wavelengths of a few nanometers. Here we show that one-dimensional (1D) periodic graphene ripples with wavelengths from 2 nm to tens of nanometers can be implemented in the intrinsic areas of a continuous mosaic (...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-08, Vol.113 (8), p.086102-086102, Article 086102 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 086102 |
---|---|
container_issue | 8 |
container_start_page | 086102 |
container_title | Physical review letters |
container_volume | 113 |
creator | Bai, Ke-Ke Zhou, Yu Zheng, Hong Meng, Lan Peng, Hailin Liu, Zhongfan Nie, Jia-Cai He, Lin |
description | In previous studies, it has proved difficult to realize periodic graphene ripples with wavelengths of a few nanometers. Here we show that one-dimensional (1D) periodic graphene ripples with wavelengths from 2 nm to tens of nanometers can be implemented in the intrinsic areas of a continuous mosaic (locally N-doped) graphene monolayer by simultaneously using both the thermal strain engineering and the anisotropic surface stress of the Cu substrate. Our result indicates that the constraint imposed at the boundaries between the intrinsic and the N-doped regions play a vital role in creating these 1D ripples. We also demonstrate that the observed rippling modes are beyond the descriptions of continuum mechanics due to the decoupling of graphene's bending and tensional deformations. Scanning tunneling spectroscopy measurements indicate that the nanorippling generates a periodic electronic superlattice and opens a zero-energy gap of about 130 meV in graphene. This result may pave a facile way for tailoring the structures and electronic properties of graphene. |
doi_str_mv | 10.1103/PhysRevLett.113.086102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786210567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1560584361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-6d251bd52eb361160f3ebc6a87e9dd12996324a9dd904289351eb80865ec838c3</originalsourceid><addsrcrecordid>eNqFUU1LxDAQDaLouvoXpEcv1ZmmTZOjLH7BgiJ6lJKmsxppk5p0hf33RlbFm6fJvLw3eZPH2AnCGSLw8_vXTXygjyVNUwL4GUiBUOywGUKt8hqx3GUzAI65AqgP2GGMbwCAhZD77KCoUBUIasaeF4H0ZN1L5h3lnR3IReud7jOnnY9G95SNFKzvrMmCHceeYmZdpjPjXdKt_Tpmg486Xb8EPb6So9Q73-sNhSO2t9J9pOPvOmdPV5ePi5t8eXd9u7hY5qYsqykXXTLUdlVBLReIAlacWiO0rEl1HRZKCV6UOp0VlIVUvEJqZVq5IiO5NHzOTrdzx-Df1xSnZrDRUN9rR8lgg7UUad9K1P9TKwGVLJOPRBVbqgk-xkCrZgx20GHTIDRfKTR_UkgAb7YpJOHJ9xvrdqDuV_bz7fwTUSaGvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560584361</pqid></control><display><type>article</type><title>Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer</title><source>American Physical Society Journals</source><creator>Bai, Ke-Ke ; Zhou, Yu ; Zheng, Hong ; Meng, Lan ; Peng, Hailin ; Liu, Zhongfan ; Nie, Jia-Cai ; He, Lin</creator><creatorcontrib>Bai, Ke-Ke ; Zhou, Yu ; Zheng, Hong ; Meng, Lan ; Peng, Hailin ; Liu, Zhongfan ; Nie, Jia-Cai ; He, Lin</creatorcontrib><description>In previous studies, it has proved difficult to realize periodic graphene ripples with wavelengths of a few nanometers. Here we show that one-dimensional (1D) periodic graphene ripples with wavelengths from 2 nm to tens of nanometers can be implemented in the intrinsic areas of a continuous mosaic (locally N-doped) graphene monolayer by simultaneously using both the thermal strain engineering and the anisotropic surface stress of the Cu substrate. Our result indicates that the constraint imposed at the boundaries between the intrinsic and the N-doped regions play a vital role in creating these 1D ripples. We also demonstrate that the observed rippling modes are beyond the descriptions of continuum mechanics due to the decoupling of graphene's bending and tensional deformations. Scanning tunneling spectroscopy measurements indicate that the nanorippling generates a periodic electronic superlattice and opens a zero-energy gap of about 130 meV in graphene. This result may pave a facile way for tailoring the structures and electronic properties of graphene.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.113.086102</identifier><identifier>PMID: 25192109</identifier><language>eng</language><publisher>United States</publisher><subject>Decoupling ; Electronics ; Graphene ; Monolayers ; Mosaics ; Nanostructure ; Ripples ; Wavelengths</subject><ispartof>Physical review letters, 2014-08, Vol.113 (8), p.086102-086102, Article 086102</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-6d251bd52eb361160f3ebc6a87e9dd12996324a9dd904289351eb80865ec838c3</citedby><cites>FETCH-LOGICAL-c445t-6d251bd52eb361160f3ebc6a87e9dd12996324a9dd904289351eb80865ec838c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2875,2876,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25192109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bai, Ke-Ke</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Meng, Lan</creatorcontrib><creatorcontrib>Peng, Hailin</creatorcontrib><creatorcontrib>Liu, Zhongfan</creatorcontrib><creatorcontrib>Nie, Jia-Cai</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><title>Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>In previous studies, it has proved difficult to realize periodic graphene ripples with wavelengths of a few nanometers. Here we show that one-dimensional (1D) periodic graphene ripples with wavelengths from 2 nm to tens of nanometers can be implemented in the intrinsic areas of a continuous mosaic (locally N-doped) graphene monolayer by simultaneously using both the thermal strain engineering and the anisotropic surface stress of the Cu substrate. Our result indicates that the constraint imposed at the boundaries between the intrinsic and the N-doped regions play a vital role in creating these 1D ripples. We also demonstrate that the observed rippling modes are beyond the descriptions of continuum mechanics due to the decoupling of graphene's bending and tensional deformations. Scanning tunneling spectroscopy measurements indicate that the nanorippling generates a periodic electronic superlattice and opens a zero-energy gap of about 130 meV in graphene. This result may pave a facile way for tailoring the structures and electronic properties of graphene.</description><subject>Decoupling</subject><subject>Electronics</subject><subject>Graphene</subject><subject>Monolayers</subject><subject>Mosaics</subject><subject>Nanostructure</subject><subject>Ripples</subject><subject>Wavelengths</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUU1LxDAQDaLouvoXpEcv1ZmmTZOjLH7BgiJ6lJKmsxppk5p0hf33RlbFm6fJvLw3eZPH2AnCGSLw8_vXTXygjyVNUwL4GUiBUOywGUKt8hqx3GUzAI65AqgP2GGMbwCAhZD77KCoUBUIasaeF4H0ZN1L5h3lnR3IReud7jOnnY9G95SNFKzvrMmCHceeYmZdpjPjXdKt_Tpmg486Xb8EPb6So9Q73-sNhSO2t9J9pOPvOmdPV5ePi5t8eXd9u7hY5qYsqykXXTLUdlVBLReIAlacWiO0rEl1HRZKCV6UOp0VlIVUvEJqZVq5IiO5NHzOTrdzx-Df1xSnZrDRUN9rR8lgg7UUad9K1P9TKwGVLJOPRBVbqgk-xkCrZgx20GHTIDRfKTR_UkgAb7YpJOHJ9xvrdqDuV_bz7fwTUSaGvw</recordid><startdate>20140822</startdate><enddate>20140822</enddate><creator>Bai, Ke-Ke</creator><creator>Zhou, Yu</creator><creator>Zheng, Hong</creator><creator>Meng, Lan</creator><creator>Peng, Hailin</creator><creator>Liu, Zhongfan</creator><creator>Nie, Jia-Cai</creator><creator>He, Lin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140822</creationdate><title>Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer</title><author>Bai, Ke-Ke ; Zhou, Yu ; Zheng, Hong ; Meng, Lan ; Peng, Hailin ; Liu, Zhongfan ; Nie, Jia-Cai ; He, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-6d251bd52eb361160f3ebc6a87e9dd12996324a9dd904289351eb80865ec838c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Decoupling</topic><topic>Electronics</topic><topic>Graphene</topic><topic>Monolayers</topic><topic>Mosaics</topic><topic>Nanostructure</topic><topic>Ripples</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Ke-Ke</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Meng, Lan</creatorcontrib><creatorcontrib>Peng, Hailin</creatorcontrib><creatorcontrib>Liu, Zhongfan</creatorcontrib><creatorcontrib>Nie, Jia-Cai</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Ke-Ke</au><au>Zhou, Yu</au><au>Zheng, Hong</au><au>Meng, Lan</au><au>Peng, Hailin</au><au>Liu, Zhongfan</au><au>Nie, Jia-Cai</au><au>He, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2014-08-22</date><risdate>2014</risdate><volume>113</volume><issue>8</issue><spage>086102</spage><epage>086102</epage><pages>086102-086102</pages><artnum>086102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>In previous studies, it has proved difficult to realize periodic graphene ripples with wavelengths of a few nanometers. Here we show that one-dimensional (1D) periodic graphene ripples with wavelengths from 2 nm to tens of nanometers can be implemented in the intrinsic areas of a continuous mosaic (locally N-doped) graphene monolayer by simultaneously using both the thermal strain engineering and the anisotropic surface stress of the Cu substrate. Our result indicates that the constraint imposed at the boundaries between the intrinsic and the N-doped regions play a vital role in creating these 1D ripples. We also demonstrate that the observed rippling modes are beyond the descriptions of continuum mechanics due to the decoupling of graphene's bending and tensional deformations. Scanning tunneling spectroscopy measurements indicate that the nanorippling generates a periodic electronic superlattice and opens a zero-energy gap of about 130 meV in graphene. This result may pave a facile way for tailoring the structures and electronic properties of graphene.</abstract><cop>United States</cop><pmid>25192109</pmid><doi>10.1103/PhysRevLett.113.086102</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2014-08, Vol.113 (8), p.086102-086102, Article 086102 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786210567 |
source | American Physical Society Journals |
subjects | Decoupling Electronics Graphene Monolayers Mosaics Nanostructure Ripples Wavelengths |
title | Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creating%20one-dimensional%20nanoscale%20periodic%20ripples%20in%20a%20continuous%20mosaic%20graphene%20monolayer&rft.jtitle=Physical%20review%20letters&rft.au=Bai,%20Ke-Ke&rft.date=2014-08-22&rft.volume=113&rft.issue=8&rft.spage=086102&rft.epage=086102&rft.pages=086102-086102&rft.artnum=086102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.113.086102&rft_dat=%3Cproquest_cross%3E1560584361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560584361&rft_id=info:pmid/25192109&rfr_iscdi=true |