Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer

In previous studies, it has proved difficult to realize periodic graphene ripples with wavelengths of a few nanometers. Here we show that one-dimensional (1D) periodic graphene ripples with wavelengths from 2 nm to tens of nanometers can be implemented in the intrinsic areas of a continuous mosaic (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-08, Vol.113 (8), p.086102-086102, Article 086102
Hauptverfasser: Bai, Ke-Ke, Zhou, Yu, Zheng, Hong, Meng, Lan, Peng, Hailin, Liu, Zhongfan, Nie, Jia-Cai, He, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 086102
container_issue 8
container_start_page 086102
container_title Physical review letters
container_volume 113
creator Bai, Ke-Ke
Zhou, Yu
Zheng, Hong
Meng, Lan
Peng, Hailin
Liu, Zhongfan
Nie, Jia-Cai
He, Lin
description In previous studies, it has proved difficult to realize periodic graphene ripples with wavelengths of a few nanometers. Here we show that one-dimensional (1D) periodic graphene ripples with wavelengths from 2 nm to tens of nanometers can be implemented in the intrinsic areas of a continuous mosaic (locally N-doped) graphene monolayer by simultaneously using both the thermal strain engineering and the anisotropic surface stress of the Cu substrate. Our result indicates that the constraint imposed at the boundaries between the intrinsic and the N-doped regions play a vital role in creating these 1D ripples. We also demonstrate that the observed rippling modes are beyond the descriptions of continuum mechanics due to the decoupling of graphene's bending and tensional deformations. Scanning tunneling spectroscopy measurements indicate that the nanorippling generates a periodic electronic superlattice and opens a zero-energy gap of about 130 meV in graphene. This result may pave a facile way for tailoring the structures and electronic properties of graphene.
doi_str_mv 10.1103/PhysRevLett.113.086102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786210567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1560584361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-6d251bd52eb361160f3ebc6a87e9dd12996324a9dd904289351eb80865ec838c3</originalsourceid><addsrcrecordid>eNqFUU1LxDAQDaLouvoXpEcv1ZmmTZOjLH7BgiJ6lJKmsxppk5p0hf33RlbFm6fJvLw3eZPH2AnCGSLw8_vXTXygjyVNUwL4GUiBUOywGUKt8hqx3GUzAI65AqgP2GGMbwCAhZD77KCoUBUIasaeF4H0ZN1L5h3lnR3IReud7jOnnY9G95SNFKzvrMmCHceeYmZdpjPjXdKt_Tpmg486Xb8EPb6So9Q73-sNhSO2t9J9pOPvOmdPV5ePi5t8eXd9u7hY5qYsqykXXTLUdlVBLReIAlacWiO0rEl1HRZKCV6UOp0VlIVUvEJqZVq5IiO5NHzOTrdzx-Df1xSnZrDRUN9rR8lgg7UUad9K1P9TKwGVLJOPRBVbqgk-xkCrZgx20GHTIDRfKTR_UkgAb7YpJOHJ9xvrdqDuV_bz7fwTUSaGvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560584361</pqid></control><display><type>article</type><title>Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer</title><source>American Physical Society Journals</source><creator>Bai, Ke-Ke ; Zhou, Yu ; Zheng, Hong ; Meng, Lan ; Peng, Hailin ; Liu, Zhongfan ; Nie, Jia-Cai ; He, Lin</creator><creatorcontrib>Bai, Ke-Ke ; Zhou, Yu ; Zheng, Hong ; Meng, Lan ; Peng, Hailin ; Liu, Zhongfan ; Nie, Jia-Cai ; He, Lin</creatorcontrib><description>In previous studies, it has proved difficult to realize periodic graphene ripples with wavelengths of a few nanometers. Here we show that one-dimensional (1D) periodic graphene ripples with wavelengths from 2 nm to tens of nanometers can be implemented in the intrinsic areas of a continuous mosaic (locally N-doped) graphene monolayer by simultaneously using both the thermal strain engineering and the anisotropic surface stress of the Cu substrate. Our result indicates that the constraint imposed at the boundaries between the intrinsic and the N-doped regions play a vital role in creating these 1D ripples. We also demonstrate that the observed rippling modes are beyond the descriptions of continuum mechanics due to the decoupling of graphene's bending and tensional deformations. Scanning tunneling spectroscopy measurements indicate that the nanorippling generates a periodic electronic superlattice and opens a zero-energy gap of about 130 meV in graphene. This result may pave a facile way for tailoring the structures and electronic properties of graphene.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.113.086102</identifier><identifier>PMID: 25192109</identifier><language>eng</language><publisher>United States</publisher><subject>Decoupling ; Electronics ; Graphene ; Monolayers ; Mosaics ; Nanostructure ; Ripples ; Wavelengths</subject><ispartof>Physical review letters, 2014-08, Vol.113 (8), p.086102-086102, Article 086102</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-6d251bd52eb361160f3ebc6a87e9dd12996324a9dd904289351eb80865ec838c3</citedby><cites>FETCH-LOGICAL-c445t-6d251bd52eb361160f3ebc6a87e9dd12996324a9dd904289351eb80865ec838c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2875,2876,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25192109$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bai, Ke-Ke</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Meng, Lan</creatorcontrib><creatorcontrib>Peng, Hailin</creatorcontrib><creatorcontrib>Liu, Zhongfan</creatorcontrib><creatorcontrib>Nie, Jia-Cai</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><title>Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>In previous studies, it has proved difficult to realize periodic graphene ripples with wavelengths of a few nanometers. Here we show that one-dimensional (1D) periodic graphene ripples with wavelengths from 2 nm to tens of nanometers can be implemented in the intrinsic areas of a continuous mosaic (locally N-doped) graphene monolayer by simultaneously using both the thermal strain engineering and the anisotropic surface stress of the Cu substrate. Our result indicates that the constraint imposed at the boundaries between the intrinsic and the N-doped regions play a vital role in creating these 1D ripples. We also demonstrate that the observed rippling modes are beyond the descriptions of continuum mechanics due to the decoupling of graphene's bending and tensional deformations. Scanning tunneling spectroscopy measurements indicate that the nanorippling generates a periodic electronic superlattice and opens a zero-energy gap of about 130 meV in graphene. This result may pave a facile way for tailoring the structures and electronic properties of graphene.</description><subject>Decoupling</subject><subject>Electronics</subject><subject>Graphene</subject><subject>Monolayers</subject><subject>Mosaics</subject><subject>Nanostructure</subject><subject>Ripples</subject><subject>Wavelengths</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUU1LxDAQDaLouvoXpEcv1ZmmTZOjLH7BgiJ6lJKmsxppk5p0hf33RlbFm6fJvLw3eZPH2AnCGSLw8_vXTXygjyVNUwL4GUiBUOywGUKt8hqx3GUzAI65AqgP2GGMbwCAhZD77KCoUBUIasaeF4H0ZN1L5h3lnR3IReud7jOnnY9G95SNFKzvrMmCHceeYmZdpjPjXdKt_Tpmg486Xb8EPb6So9Q73-sNhSO2t9J9pOPvOmdPV5ePi5t8eXd9u7hY5qYsqykXXTLUdlVBLReIAlacWiO0rEl1HRZKCV6UOp0VlIVUvEJqZVq5IiO5NHzOTrdzx-Df1xSnZrDRUN9rR8lgg7UUad9K1P9TKwGVLJOPRBVbqgk-xkCrZgx20GHTIDRfKTR_UkgAb7YpJOHJ9xvrdqDuV_bz7fwTUSaGvw</recordid><startdate>20140822</startdate><enddate>20140822</enddate><creator>Bai, Ke-Ke</creator><creator>Zhou, Yu</creator><creator>Zheng, Hong</creator><creator>Meng, Lan</creator><creator>Peng, Hailin</creator><creator>Liu, Zhongfan</creator><creator>Nie, Jia-Cai</creator><creator>He, Lin</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140822</creationdate><title>Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer</title><author>Bai, Ke-Ke ; Zhou, Yu ; Zheng, Hong ; Meng, Lan ; Peng, Hailin ; Liu, Zhongfan ; Nie, Jia-Cai ; He, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-6d251bd52eb361160f3ebc6a87e9dd12996324a9dd904289351eb80865ec838c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Decoupling</topic><topic>Electronics</topic><topic>Graphene</topic><topic>Monolayers</topic><topic>Mosaics</topic><topic>Nanostructure</topic><topic>Ripples</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Ke-Ke</creatorcontrib><creatorcontrib>Zhou, Yu</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Meng, Lan</creatorcontrib><creatorcontrib>Peng, Hailin</creatorcontrib><creatorcontrib>Liu, Zhongfan</creatorcontrib><creatorcontrib>Nie, Jia-Cai</creatorcontrib><creatorcontrib>He, Lin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Ke-Ke</au><au>Zhou, Yu</au><au>Zheng, Hong</au><au>Meng, Lan</au><au>Peng, Hailin</au><au>Liu, Zhongfan</au><au>Nie, Jia-Cai</au><au>He, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2014-08-22</date><risdate>2014</risdate><volume>113</volume><issue>8</issue><spage>086102</spage><epage>086102</epage><pages>086102-086102</pages><artnum>086102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>In previous studies, it has proved difficult to realize periodic graphene ripples with wavelengths of a few nanometers. Here we show that one-dimensional (1D) periodic graphene ripples with wavelengths from 2 nm to tens of nanometers can be implemented in the intrinsic areas of a continuous mosaic (locally N-doped) graphene monolayer by simultaneously using both the thermal strain engineering and the anisotropic surface stress of the Cu substrate. Our result indicates that the constraint imposed at the boundaries between the intrinsic and the N-doped regions play a vital role in creating these 1D ripples. We also demonstrate that the observed rippling modes are beyond the descriptions of continuum mechanics due to the decoupling of graphene's bending and tensional deformations. Scanning tunneling spectroscopy measurements indicate that the nanorippling generates a periodic electronic superlattice and opens a zero-energy gap of about 130 meV in graphene. This result may pave a facile way for tailoring the structures and electronic properties of graphene.</abstract><cop>United States</cop><pmid>25192109</pmid><doi>10.1103/PhysRevLett.113.086102</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2014-08, Vol.113 (8), p.086102-086102, Article 086102
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1786210567
source American Physical Society Journals
subjects Decoupling
Electronics
Graphene
Monolayers
Mosaics
Nanostructure
Ripples
Wavelengths
title Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creating%20one-dimensional%20nanoscale%20periodic%20ripples%20in%20a%20continuous%20mosaic%20graphene%20monolayer&rft.jtitle=Physical%20review%20letters&rft.au=Bai,%20Ke-Ke&rft.date=2014-08-22&rft.volume=113&rft.issue=8&rft.spage=086102&rft.epage=086102&rft.pages=086102-086102&rft.artnum=086102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.113.086102&rft_dat=%3Cproquest_cross%3E1560584361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560584361&rft_id=info:pmid/25192109&rfr_iscdi=true