Leaking of trajectories from the phase space of discontinuous dynamics

The escape of particles from the phase space produced by a two-dimensional, nonlinear and area-preserving, discontinuous map is investigated by using both numerical simulations and the explicit solution of the corresponding diffusion equation. The mapping, given in action-angle variables, is paramet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2015-10, Vol.48 (40), p.405101-10
Hauptverfasser: Méndez-Bermúdez, J A, Martínez-Mendoza, A J, Livorati, André L P, Leonel, Edson D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 40
container_start_page 405101
container_title Journal of physics. A, Mathematical and theoretical
container_volume 48
creator Méndez-Bermúdez, J A
Martínez-Mendoza, A J
Livorati, André L P
Leonel, Edson D
description The escape of particles from the phase space produced by a two-dimensional, nonlinear and area-preserving, discontinuous map is investigated by using both numerical simulations and the explicit solution of the corresponding diffusion equation. The mapping, given in action-angle variables, is parameterized by K, which controls a transition from integrability to non-integrability. We focus on the two dynamical regimes of the map: slow diffusion ( ) and quasilinear diffusion ( ) regimes, separated by the critical parameter value Kc = 1. When a hole is introduced in the action axis, we find the histogram of escape times and the survival probability of particles to be scaling invariant in both the slow and the quasilinear diffusion regimes, with scaling laws proportional to the corresponding diffusion coefficients, namely, proportional to and K2, respectively. Our numerical simulations agree remarkably well with the analytical results obtained from the explicit solution of the diffusion equation, hence giving robustness to the escape formalism.
doi_str_mv 10.1088/1751-8113/48/40/405101
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786208711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786208711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-251e05ed6e5c450ec67356dfcbf74ccd7f176919f6b83b61ff6a8c970cfe6ad33</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsFa_guToJXYn2X85SrEqFLzoedluZu3WJht3k0O_vQkpXoWBGZj3hnk_Qu6BPgJVagWSQ64AyhVTK0bH4kDhgizOiwIu_2Yor8lNSgdKOaNVsSCbLZpv335lwWV9NAe0fYgeU-ZiaLJ-j1m3Nwmz1BmLk6j2yYa29-0QhpTVp9Y03qZbcuXMMeHduS_J5-b5Y_2ab99f3tZP29yWsurzggNSjrVAbhmnaIUsuaid3TnJrK2lAykqqJzYqXInwDlhlK0ktQ6FqctySR7mu10MPwOmXjfjP3g8mhbHfzRIJQqq5Bh0ScQstTGkFNHpLvrGxJMGqidwemKiJyaaKc2onsGNxmI2-tDpQxhiOyb6z_QLIEhwTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786208711</pqid></control><display><type>article</type><title>Leaking of trajectories from the phase space of discontinuous dynamics</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Méndez-Bermúdez, J A ; Martínez-Mendoza, A J ; Livorati, André L P ; Leonel, Edson D</creator><creatorcontrib>Méndez-Bermúdez, J A ; Martínez-Mendoza, A J ; Livorati, André L P ; Leonel, Edson D</creatorcontrib><description>The escape of particles from the phase space produced by a two-dimensional, nonlinear and area-preserving, discontinuous map is investigated by using both numerical simulations and the explicit solution of the corresponding diffusion equation. The mapping, given in action-angle variables, is parameterized by K, which controls a transition from integrability to non-integrability. We focus on the two dynamical regimes of the map: slow diffusion ( ) and quasilinear diffusion ( ) regimes, separated by the critical parameter value Kc = 1. When a hole is introduced in the action axis, we find the histogram of escape times and the survival probability of particles to be scaling invariant in both the slow and the quasilinear diffusion regimes, with scaling laws proportional to the corresponding diffusion coefficients, namely, proportional to and K2, respectively. Our numerical simulations agree remarkably well with the analytical results obtained from the explicit solution of the diffusion equation, hence giving robustness to the escape formalism.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8113/48/40/405101</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Computer simulation ; Diffusion ; Diffusion rate ; escape formalism ; Invariants ; Mathematical analysis ; Mathematical models ; Nonlinear dynamics ; scaling ; Trajectories</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2015-10, Vol.48 (40), p.405101-10</ispartof><rights>2015 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-251e05ed6e5c450ec67356dfcbf74ccd7f176919f6b83b61ff6a8c970cfe6ad33</citedby><cites>FETCH-LOGICAL-c379t-251e05ed6e5c450ec67356dfcbf74ccd7f176919f6b83b61ff6a8c970cfe6ad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8113/48/40/405101/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,782,786,27933,27934,53855,53902</link.rule.ids></links><search><creatorcontrib>Méndez-Bermúdez, J A</creatorcontrib><creatorcontrib>Martínez-Mendoza, A J</creatorcontrib><creatorcontrib>Livorati, André L P</creatorcontrib><creatorcontrib>Leonel, Edson D</creatorcontrib><title>Leaking of trajectories from the phase space of discontinuous dynamics</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>The escape of particles from the phase space produced by a two-dimensional, nonlinear and area-preserving, discontinuous map is investigated by using both numerical simulations and the explicit solution of the corresponding diffusion equation. The mapping, given in action-angle variables, is parameterized by K, which controls a transition from integrability to non-integrability. We focus on the two dynamical regimes of the map: slow diffusion ( ) and quasilinear diffusion ( ) regimes, separated by the critical parameter value Kc = 1. When a hole is introduced in the action axis, we find the histogram of escape times and the survival probability of particles to be scaling invariant in both the slow and the quasilinear diffusion regimes, with scaling laws proportional to the corresponding diffusion coefficients, namely, proportional to and K2, respectively. Our numerical simulations agree remarkably well with the analytical results obtained from the explicit solution of the diffusion equation, hence giving robustness to the escape formalism.</description><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>escape formalism</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear dynamics</subject><subject>scaling</subject><subject>Trajectories</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxRdRsFa_guToJXYn2X85SrEqFLzoedluZu3WJht3k0O_vQkpXoWBGZj3hnk_Qu6BPgJVagWSQ64AyhVTK0bH4kDhgizOiwIu_2Yor8lNSgdKOaNVsSCbLZpv335lwWV9NAe0fYgeU-ZiaLJ-j1m3Nwmz1BmLk6j2yYa29-0QhpTVp9Y03qZbcuXMMeHduS_J5-b5Y_2ab99f3tZP29yWsurzggNSjrVAbhmnaIUsuaid3TnJrK2lAykqqJzYqXInwDlhlK0ktQ6FqctySR7mu10MPwOmXjfjP3g8mhbHfzRIJQqq5Bh0ScQstTGkFNHpLvrGxJMGqidwemKiJyaaKc2onsGNxmI2-tDpQxhiOyb6z_QLIEhwTQ</recordid><startdate>20151009</startdate><enddate>20151009</enddate><creator>Méndez-Bermúdez, J A</creator><creator>Martínez-Mendoza, A J</creator><creator>Livorati, André L P</creator><creator>Leonel, Edson D</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151009</creationdate><title>Leaking of trajectories from the phase space of discontinuous dynamics</title><author>Méndez-Bermúdez, J A ; Martínez-Mendoza, A J ; Livorati, André L P ; Leonel, Edson D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-251e05ed6e5c450ec67356dfcbf74ccd7f176919f6b83b61ff6a8c970cfe6ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>escape formalism</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear dynamics</topic><topic>scaling</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Méndez-Bermúdez, J A</creatorcontrib><creatorcontrib>Martínez-Mendoza, A J</creatorcontrib><creatorcontrib>Livorati, André L P</creatorcontrib><creatorcontrib>Leonel, Edson D</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Méndez-Bermúdez, J A</au><au>Martínez-Mendoza, A J</au><au>Livorati, André L P</au><au>Leonel, Edson D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leaking of trajectories from the phase space of discontinuous dynamics</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2015-10-09</date><risdate>2015</risdate><volume>48</volume><issue>40</issue><spage>405101</spage><epage>10</epage><pages>405101-10</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>The escape of particles from the phase space produced by a two-dimensional, nonlinear and area-preserving, discontinuous map is investigated by using both numerical simulations and the explicit solution of the corresponding diffusion equation. The mapping, given in action-angle variables, is parameterized by K, which controls a transition from integrability to non-integrability. We focus on the two dynamical regimes of the map: slow diffusion ( ) and quasilinear diffusion ( ) regimes, separated by the critical parameter value Kc = 1. When a hole is introduced in the action axis, we find the histogram of escape times and the survival probability of particles to be scaling invariant in both the slow and the quasilinear diffusion regimes, with scaling laws proportional to the corresponding diffusion coefficients, namely, proportional to and K2, respectively. Our numerical simulations agree remarkably well with the analytical results obtained from the explicit solution of the diffusion equation, hence giving robustness to the escape formalism.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8113/48/40/405101</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-8113
ispartof Journal of physics. A, Mathematical and theoretical, 2015-10, Vol.48 (40), p.405101-10
issn 1751-8113
1751-8121
language eng
recordid cdi_proquest_miscellaneous_1786208711
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Computer simulation
Diffusion
Diffusion rate
escape formalism
Invariants
Mathematical analysis
Mathematical models
Nonlinear dynamics
scaling
Trajectories
title Leaking of trajectories from the phase space of discontinuous dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leaking%20of%20trajectories%20from%20the%20phase%20space%20of%20discontinuous%20dynamics&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=M%C3%A9ndez-Berm%C3%BAdez,%20J%20A&rft.date=2015-10-09&rft.volume=48&rft.issue=40&rft.spage=405101&rft.epage=10&rft.pages=405101-10&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8113/48/40/405101&rft_dat=%3Cproquest_iop_j%3E1786208711%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786208711&rft_id=info:pmid/&rfr_iscdi=true