Leaking of trajectories from the phase space of discontinuous dynamics
The escape of particles from the phase space produced by a two-dimensional, nonlinear and area-preserving, discontinuous map is investigated by using both numerical simulations and the explicit solution of the corresponding diffusion equation. The mapping, given in action-angle variables, is paramet...
Gespeichert in:
Veröffentlicht in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2015-10, Vol.48 (40), p.405101-10 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 40 |
container_start_page | 405101 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 48 |
creator | Méndez-Bermúdez, J A Martínez-Mendoza, A J Livorati, André L P Leonel, Edson D |
description | The escape of particles from the phase space produced by a two-dimensional, nonlinear and area-preserving, discontinuous map is investigated by using both numerical simulations and the explicit solution of the corresponding diffusion equation. The mapping, given in action-angle variables, is parameterized by K, which controls a transition from integrability to non-integrability. We focus on the two dynamical regimes of the map: slow diffusion ( ) and quasilinear diffusion ( ) regimes, separated by the critical parameter value Kc = 1. When a hole is introduced in the action axis, we find the histogram of escape times and the survival probability of particles to be scaling invariant in both the slow and the quasilinear diffusion regimes, with scaling laws proportional to the corresponding diffusion coefficients, namely, proportional to and K2, respectively. Our numerical simulations agree remarkably well with the analytical results obtained from the explicit solution of the diffusion equation, hence giving robustness to the escape formalism. |
doi_str_mv | 10.1088/1751-8113/48/40/405101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786208711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786208711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-251e05ed6e5c450ec67356dfcbf74ccd7f176919f6b83b61ff6a8c970cfe6ad33</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsFa_guToJXYn2X85SrEqFLzoedluZu3WJht3k0O_vQkpXoWBGZj3hnk_Qu6BPgJVagWSQ64AyhVTK0bH4kDhgizOiwIu_2Yor8lNSgdKOaNVsSCbLZpv335lwWV9NAe0fYgeU-ZiaLJ-j1m3Nwmz1BmLk6j2yYa29-0QhpTVp9Y03qZbcuXMMeHduS_J5-b5Y_2ab99f3tZP29yWsurzggNSjrVAbhmnaIUsuaid3TnJrK2lAykqqJzYqXInwDlhlK0ktQ6FqctySR7mu10MPwOmXjfjP3g8mhbHfzRIJQqq5Bh0ScQstTGkFNHpLvrGxJMGqidwemKiJyaaKc2onsGNxmI2-tDpQxhiOyb6z_QLIEhwTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786208711</pqid></control><display><type>article</type><title>Leaking of trajectories from the phase space of discontinuous dynamics</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Méndez-Bermúdez, J A ; Martínez-Mendoza, A J ; Livorati, André L P ; Leonel, Edson D</creator><creatorcontrib>Méndez-Bermúdez, J A ; Martínez-Mendoza, A J ; Livorati, André L P ; Leonel, Edson D</creatorcontrib><description>The escape of particles from the phase space produced by a two-dimensional, nonlinear and area-preserving, discontinuous map is investigated by using both numerical simulations and the explicit solution of the corresponding diffusion equation. The mapping, given in action-angle variables, is parameterized by K, which controls a transition from integrability to non-integrability. We focus on the two dynamical regimes of the map: slow diffusion ( ) and quasilinear diffusion ( ) regimes, separated by the critical parameter value Kc = 1. When a hole is introduced in the action axis, we find the histogram of escape times and the survival probability of particles to be scaling invariant in both the slow and the quasilinear diffusion regimes, with scaling laws proportional to the corresponding diffusion coefficients, namely, proportional to and K2, respectively. Our numerical simulations agree remarkably well with the analytical results obtained from the explicit solution of the diffusion equation, hence giving robustness to the escape formalism.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8113/48/40/405101</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Computer simulation ; Diffusion ; Diffusion rate ; escape formalism ; Invariants ; Mathematical analysis ; Mathematical models ; Nonlinear dynamics ; scaling ; Trajectories</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2015-10, Vol.48 (40), p.405101-10</ispartof><rights>2015 IOP Publishing Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-251e05ed6e5c450ec67356dfcbf74ccd7f176919f6b83b61ff6a8c970cfe6ad33</citedby><cites>FETCH-LOGICAL-c379t-251e05ed6e5c450ec67356dfcbf74ccd7f176919f6b83b61ff6a8c970cfe6ad33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1751-8113/48/40/405101/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>315,782,786,27933,27934,53855,53902</link.rule.ids></links><search><creatorcontrib>Méndez-Bermúdez, J A</creatorcontrib><creatorcontrib>Martínez-Mendoza, A J</creatorcontrib><creatorcontrib>Livorati, André L P</creatorcontrib><creatorcontrib>Leonel, Edson D</creatorcontrib><title>Leaking of trajectories from the phase space of discontinuous dynamics</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>The escape of particles from the phase space produced by a two-dimensional, nonlinear and area-preserving, discontinuous map is investigated by using both numerical simulations and the explicit solution of the corresponding diffusion equation. The mapping, given in action-angle variables, is parameterized by K, which controls a transition from integrability to non-integrability. We focus on the two dynamical regimes of the map: slow diffusion ( ) and quasilinear diffusion ( ) regimes, separated by the critical parameter value Kc = 1. When a hole is introduced in the action axis, we find the histogram of escape times and the survival probability of particles to be scaling invariant in both the slow and the quasilinear diffusion regimes, with scaling laws proportional to the corresponding diffusion coefficients, namely, proportional to and K2, respectively. Our numerical simulations agree remarkably well with the analytical results obtained from the explicit solution of the diffusion equation, hence giving robustness to the escape formalism.</description><subject>Computer simulation</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>escape formalism</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinear dynamics</subject><subject>scaling</subject><subject>Trajectories</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxRdRsFa_guToJXYn2X85SrEqFLzoedluZu3WJht3k0O_vQkpXoWBGZj3hnk_Qu6BPgJVagWSQ64AyhVTK0bH4kDhgizOiwIu_2Yor8lNSgdKOaNVsSCbLZpv335lwWV9NAe0fYgeU-ZiaLJ-j1m3Nwmz1BmLk6j2yYa29-0QhpTVp9Y03qZbcuXMMeHduS_J5-b5Y_2ab99f3tZP29yWsurzggNSjrVAbhmnaIUsuaid3TnJrK2lAykqqJzYqXInwDlhlK0ktQ6FqctySR7mu10MPwOmXjfjP3g8mhbHfzRIJQqq5Bh0ScQstTGkFNHpLvrGxJMGqidwemKiJyaaKc2onsGNxmI2-tDpQxhiOyb6z_QLIEhwTQ</recordid><startdate>20151009</startdate><enddate>20151009</enddate><creator>Méndez-Bermúdez, J A</creator><creator>Martínez-Mendoza, A J</creator><creator>Livorati, André L P</creator><creator>Leonel, Edson D</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20151009</creationdate><title>Leaking of trajectories from the phase space of discontinuous dynamics</title><author>Méndez-Bermúdez, J A ; Martínez-Mendoza, A J ; Livorati, André L P ; Leonel, Edson D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-251e05ed6e5c450ec67356dfcbf74ccd7f176919f6b83b61ff6a8c970cfe6ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer simulation</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>escape formalism</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinear dynamics</topic><topic>scaling</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Méndez-Bermúdez, J A</creatorcontrib><creatorcontrib>Martínez-Mendoza, A J</creatorcontrib><creatorcontrib>Livorati, André L P</creatorcontrib><creatorcontrib>Leonel, Edson D</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Méndez-Bermúdez, J A</au><au>Martínez-Mendoza, A J</au><au>Livorati, André L P</au><au>Leonel, Edson D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leaking of trajectories from the phase space of discontinuous dynamics</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2015-10-09</date><risdate>2015</risdate><volume>48</volume><issue>40</issue><spage>405101</spage><epage>10</epage><pages>405101-10</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>The escape of particles from the phase space produced by a two-dimensional, nonlinear and area-preserving, discontinuous map is investigated by using both numerical simulations and the explicit solution of the corresponding diffusion equation. The mapping, given in action-angle variables, is parameterized by K, which controls a transition from integrability to non-integrability. We focus on the two dynamical regimes of the map: slow diffusion ( ) and quasilinear diffusion ( ) regimes, separated by the critical parameter value Kc = 1. When a hole is introduced in the action axis, we find the histogram of escape times and the survival probability of particles to be scaling invariant in both the slow and the quasilinear diffusion regimes, with scaling laws proportional to the corresponding diffusion coefficients, namely, proportional to and K2, respectively. Our numerical simulations agree remarkably well with the analytical results obtained from the explicit solution of the diffusion equation, hence giving robustness to the escape formalism.</abstract><pub>IOP Publishing</pub><doi>10.1088/1751-8113/48/40/405101</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2015-10, Vol.48 (40), p.405101-10 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786208711 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Computer simulation Diffusion Diffusion rate escape formalism Invariants Mathematical analysis Mathematical models Nonlinear dynamics scaling Trajectories |
title | Leaking of trajectories from the phase space of discontinuous dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A11%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leaking%20of%20trajectories%20from%20the%20phase%20space%20of%20discontinuous%20dynamics&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=M%C3%A9ndez-Berm%C3%BAdez,%20J%20A&rft.date=2015-10-09&rft.volume=48&rft.issue=40&rft.spage=405101&rft.epage=10&rft.pages=405101-10&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8113/48/40/405101&rft_dat=%3Cproquest_iop_j%3E1786208711%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786208711&rft_id=info:pmid/&rfr_iscdi=true |