Finite element approximation of optimal control problems governed by time fractional diffusion equation
In this paper Galerkin finite element approximation of optimal control problems governed by time fractional diffusion equations is investigated. Piecewise linear polynomials are used to approximate the state and adjoint state, while the control is discretized by variational discretization method. A...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2016-01, Vol.71 (1), p.301-318 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 318 |
---|---|
container_issue | 1 |
container_start_page | 301 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 71 |
creator | Zhou, Zhaojie Gong, Wei |
description | In this paper Galerkin finite element approximation of optimal control problems governed by time fractional diffusion equations is investigated. Piecewise linear polynomials are used to approximate the state and adjoint state, while the control is discretized by variational discretization method. A priori error estimates for the semi-discrete approximations of the state, adjoint state and control are derived. Furthermore, we also discuss the fully discrete scheme for the control problems. A finite difference method developed in Lin and Xu (2007) is used to discretize the time fractional derivative. Fully discrete first order optimality condition is developed based on ‘first discretize, then optimize’ approach. The stability and truncation error of the fully discrete scheme are analyzed. Numerical example is given to illustrate the theoretical findings. |
doi_str_mv | 10.1016/j.camwa.2015.11.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786203072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812211500557X</els_id><sourcerecordid>1786203072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-4c5a922c5dc13e1f512f8f90da0d1b4d3b59ab6280add41be3c3647213cec3803</originalsourceid><addsrcrecordid>eNp9kDlPAzEQhS0EEuH4BTQuaXaZsfdKQYEQlxSJBmrLa48jR5t1Ym84_j0OoaYajeZ7T_MeY1cIJQI2N6vS6PWnLgVgXSKWgNURm2HXyqJtmu6YzaCbdwUKgafsLKUVAFRSwIwtH_3oJ-I00JrGievNJoYvv9aTDyMPjofNlLeBmzBOMQw8n_vMJr4MHxRHsrz_5hkh7qI2e1WGrXdul_YOtN39Wl2wE6eHRJd_85y9Pz683T8Xi9enl_u7RWEqaKaiMrWeC2Fqa1ASuhqF69wcrAaLfWVlX89134gOtLUV9iSNbKpWoDRkZAfynF0ffPOf2x2lSa19MjQMeqSwSwrbrhEgoRUZlQfUxJBSJKc2MUeN3wpB7WtVK_Vbq9rXqhBVrjWrbg8qyik-PEWVjKfRkPWRzKRs8P_qfwDduoRK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786203072</pqid></control><display><type>article</type><title>Finite element approximation of optimal control problems governed by time fractional diffusion equation</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhou, Zhaojie ; Gong, Wei</creator><creatorcontrib>Zhou, Zhaojie ; Gong, Wei</creatorcontrib><description>In this paper Galerkin finite element approximation of optimal control problems governed by time fractional diffusion equations is investigated. Piecewise linear polynomials are used to approximate the state and adjoint state, while the control is discretized by variational discretization method. A priori error estimates for the semi-discrete approximations of the state, adjoint state and control are derived. Furthermore, we also discuss the fully discrete scheme for the control problems. A finite difference method developed in Lin and Xu (2007) is used to discretize the time fractional derivative. Fully discrete first order optimality condition is developed based on ‘first discretize, then optimize’ approach. The stability and truncation error of the fully discrete scheme are analyzed. Numerical example is given to illustrate the theoretical findings.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2015.11.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A priori error estimate ; Adjoints ; Approximation ; Diffusion ; Discretization ; Finite element method ; Galerkin finite element method ; Mathematical analysis ; Mathematical models ; Optimal control ; Optimal control problems ; Time fractional diffusion equations ; Variational discretization</subject><ispartof>Computers & mathematics with applications (1987), 2016-01, Vol.71 (1), p.301-318</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-4c5a922c5dc13e1f512f8f90da0d1b4d3b59ab6280add41be3c3647213cec3803</citedby><cites>FETCH-LOGICAL-c406t-4c5a922c5dc13e1f512f8f90da0d1b4d3b59ab6280add41be3c3647213cec3803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2015.11.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhou, Zhaojie</creatorcontrib><creatorcontrib>Gong, Wei</creatorcontrib><title>Finite element approximation of optimal control problems governed by time fractional diffusion equation</title><title>Computers & mathematics with applications (1987)</title><description>In this paper Galerkin finite element approximation of optimal control problems governed by time fractional diffusion equations is investigated. Piecewise linear polynomials are used to approximate the state and adjoint state, while the control is discretized by variational discretization method. A priori error estimates for the semi-discrete approximations of the state, adjoint state and control are derived. Furthermore, we also discuss the fully discrete scheme for the control problems. A finite difference method developed in Lin and Xu (2007) is used to discretize the time fractional derivative. Fully discrete first order optimality condition is developed based on ‘first discretize, then optimize’ approach. The stability and truncation error of the fully discrete scheme are analyzed. Numerical example is given to illustrate the theoretical findings.</description><subject>A priori error estimate</subject><subject>Adjoints</subject><subject>Approximation</subject><subject>Diffusion</subject><subject>Discretization</subject><subject>Finite element method</subject><subject>Galerkin finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Optimal control problems</subject><subject>Time fractional diffusion equations</subject><subject>Variational discretization</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDlPAzEQhS0EEuH4BTQuaXaZsfdKQYEQlxSJBmrLa48jR5t1Ym84_j0OoaYajeZ7T_MeY1cIJQI2N6vS6PWnLgVgXSKWgNURm2HXyqJtmu6YzaCbdwUKgafsLKUVAFRSwIwtH_3oJ-I00JrGievNJoYvv9aTDyMPjofNlLeBmzBOMQw8n_vMJr4MHxRHsrz_5hkh7qI2e1WGrXdul_YOtN39Wl2wE6eHRJd_85y9Pz683T8Xi9enl_u7RWEqaKaiMrWeC2Fqa1ASuhqF69wcrAaLfWVlX89134gOtLUV9iSNbKpWoDRkZAfynF0ffPOf2x2lSa19MjQMeqSwSwrbrhEgoRUZlQfUxJBSJKc2MUeN3wpB7WtVK_Vbq9rXqhBVrjWrbg8qyik-PEWVjKfRkPWRzKRs8P_qfwDduoRK</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Zhou, Zhaojie</creator><creator>Gong, Wei</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160101</creationdate><title>Finite element approximation of optimal control problems governed by time fractional diffusion equation</title><author>Zhou, Zhaojie ; Gong, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-4c5a922c5dc13e1f512f8f90da0d1b4d3b59ab6280add41be3c3647213cec3803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A priori error estimate</topic><topic>Adjoints</topic><topic>Approximation</topic><topic>Diffusion</topic><topic>Discretization</topic><topic>Finite element method</topic><topic>Galerkin finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Optimal control problems</topic><topic>Time fractional diffusion equations</topic><topic>Variational discretization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhaojie</creatorcontrib><creatorcontrib>Gong, Wei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhaojie</au><au>Gong, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element approximation of optimal control problems governed by time fractional diffusion equation</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>71</volume><issue>1</issue><spage>301</spage><epage>318</epage><pages>301-318</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper Galerkin finite element approximation of optimal control problems governed by time fractional diffusion equations is investigated. Piecewise linear polynomials are used to approximate the state and adjoint state, while the control is discretized by variational discretization method. A priori error estimates for the semi-discrete approximations of the state, adjoint state and control are derived. Furthermore, we also discuss the fully discrete scheme for the control problems. A finite difference method developed in Lin and Xu (2007) is used to discretize the time fractional derivative. Fully discrete first order optimality condition is developed based on ‘first discretize, then optimize’ approach. The stability and truncation error of the fully discrete scheme are analyzed. Numerical example is given to illustrate the theoretical findings.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2015.11.014</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2016-01, Vol.71 (1), p.301-318 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786203072 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | A priori error estimate Adjoints Approximation Diffusion Discretization Finite element method Galerkin finite element method Mathematical analysis Mathematical models Optimal control Optimal control problems Time fractional diffusion equations Variational discretization |
title | Finite element approximation of optimal control problems governed by time fractional diffusion equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20approximation%20of%20optimal%20control%20problems%20governed%20by%20time%20fractional%20diffusion%20equation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Zhou,%20Zhaojie&rft.date=2016-01-01&rft.volume=71&rft.issue=1&rft.spage=301&rft.epage=318&rft.pages=301-318&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2015.11.014&rft_dat=%3Cproquest_cross%3E1786203072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786203072&rft_id=info:pmid/&rft_els_id=S089812211500557X&rfr_iscdi=true |