Finite element approximation of optimal control problems governed by time fractional diffusion equation

In this paper Galerkin finite element approximation of optimal control problems governed by time fractional diffusion equations is investigated. Piecewise linear polynomials are used to approximate the state and adjoint state, while the control is discretized by variational discretization method. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2016-01, Vol.71 (1), p.301-318
Hauptverfasser: Zhou, Zhaojie, Gong, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 318
container_issue 1
container_start_page 301
container_title Computers & mathematics with applications (1987)
container_volume 71
creator Zhou, Zhaojie
Gong, Wei
description In this paper Galerkin finite element approximation of optimal control problems governed by time fractional diffusion equations is investigated. Piecewise linear polynomials are used to approximate the state and adjoint state, while the control is discretized by variational discretization method. A priori error estimates for the semi-discrete approximations of the state, adjoint state and control are derived. Furthermore, we also discuss the fully discrete scheme for the control problems. A finite difference method developed in Lin and Xu (2007) is used to discretize the time fractional derivative. Fully discrete first order optimality condition is developed based on ‘first discretize, then optimize’ approach. The stability and truncation error of the fully discrete scheme are analyzed. Numerical example is given to illustrate the theoretical findings.
doi_str_mv 10.1016/j.camwa.2015.11.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786203072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812211500557X</els_id><sourcerecordid>1786203072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-4c5a922c5dc13e1f512f8f90da0d1b4d3b59ab6280add41be3c3647213cec3803</originalsourceid><addsrcrecordid>eNp9kDlPAzEQhS0EEuH4BTQuaXaZsfdKQYEQlxSJBmrLa48jR5t1Ym84_j0OoaYajeZ7T_MeY1cIJQI2N6vS6PWnLgVgXSKWgNURm2HXyqJtmu6YzaCbdwUKgafsLKUVAFRSwIwtH_3oJ-I00JrGievNJoYvv9aTDyMPjofNlLeBmzBOMQw8n_vMJr4MHxRHsrz_5hkh7qI2e1WGrXdul_YOtN39Wl2wE6eHRJd_85y9Pz683T8Xi9enl_u7RWEqaKaiMrWeC2Fqa1ASuhqF69wcrAaLfWVlX89134gOtLUV9iSNbKpWoDRkZAfynF0ffPOf2x2lSa19MjQMeqSwSwrbrhEgoRUZlQfUxJBSJKc2MUeN3wpB7WtVK_Vbq9rXqhBVrjWrbg8qyik-PEWVjKfRkPWRzKRs8P_qfwDduoRK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786203072</pqid></control><display><type>article</type><title>Finite element approximation of optimal control problems governed by time fractional diffusion equation</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhou, Zhaojie ; Gong, Wei</creator><creatorcontrib>Zhou, Zhaojie ; Gong, Wei</creatorcontrib><description>In this paper Galerkin finite element approximation of optimal control problems governed by time fractional diffusion equations is investigated. Piecewise linear polynomials are used to approximate the state and adjoint state, while the control is discretized by variational discretization method. A priori error estimates for the semi-discrete approximations of the state, adjoint state and control are derived. Furthermore, we also discuss the fully discrete scheme for the control problems. A finite difference method developed in Lin and Xu (2007) is used to discretize the time fractional derivative. Fully discrete first order optimality condition is developed based on ‘first discretize, then optimize’ approach. The stability and truncation error of the fully discrete scheme are analyzed. Numerical example is given to illustrate the theoretical findings.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2015.11.014</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A priori error estimate ; Adjoints ; Approximation ; Diffusion ; Discretization ; Finite element method ; Galerkin finite element method ; Mathematical analysis ; Mathematical models ; Optimal control ; Optimal control problems ; Time fractional diffusion equations ; Variational discretization</subject><ispartof>Computers &amp; mathematics with applications (1987), 2016-01, Vol.71 (1), p.301-318</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-4c5a922c5dc13e1f512f8f90da0d1b4d3b59ab6280add41be3c3647213cec3803</citedby><cites>FETCH-LOGICAL-c406t-4c5a922c5dc13e1f512f8f90da0d1b4d3b59ab6280add41be3c3647213cec3803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2015.11.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhou, Zhaojie</creatorcontrib><creatorcontrib>Gong, Wei</creatorcontrib><title>Finite element approximation of optimal control problems governed by time fractional diffusion equation</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper Galerkin finite element approximation of optimal control problems governed by time fractional diffusion equations is investigated. Piecewise linear polynomials are used to approximate the state and adjoint state, while the control is discretized by variational discretization method. A priori error estimates for the semi-discrete approximations of the state, adjoint state and control are derived. Furthermore, we also discuss the fully discrete scheme for the control problems. A finite difference method developed in Lin and Xu (2007) is used to discretize the time fractional derivative. Fully discrete first order optimality condition is developed based on ‘first discretize, then optimize’ approach. The stability and truncation error of the fully discrete scheme are analyzed. Numerical example is given to illustrate the theoretical findings.</description><subject>A priori error estimate</subject><subject>Adjoints</subject><subject>Approximation</subject><subject>Diffusion</subject><subject>Discretization</subject><subject>Finite element method</subject><subject>Galerkin finite element method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Optimal control problems</subject><subject>Time fractional diffusion equations</subject><subject>Variational discretization</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDlPAzEQhS0EEuH4BTQuaXaZsfdKQYEQlxSJBmrLa48jR5t1Ym84_j0OoaYajeZ7T_MeY1cIJQI2N6vS6PWnLgVgXSKWgNURm2HXyqJtmu6YzaCbdwUKgafsLKUVAFRSwIwtH_3oJ-I00JrGievNJoYvv9aTDyMPjofNlLeBmzBOMQw8n_vMJr4MHxRHsrz_5hkh7qI2e1WGrXdul_YOtN39Wl2wE6eHRJd_85y9Pz683T8Xi9enl_u7RWEqaKaiMrWeC2Fqa1ASuhqF69wcrAaLfWVlX89134gOtLUV9iSNbKpWoDRkZAfynF0ffPOf2x2lSa19MjQMeqSwSwrbrhEgoRUZlQfUxJBSJKc2MUeN3wpB7WtVK_Vbq9rXqhBVrjWrbg8qyik-PEWVjKfRkPWRzKRs8P_qfwDduoRK</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Zhou, Zhaojie</creator><creator>Gong, Wei</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160101</creationdate><title>Finite element approximation of optimal control problems governed by time fractional diffusion equation</title><author>Zhou, Zhaojie ; Gong, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-4c5a922c5dc13e1f512f8f90da0d1b4d3b59ab6280add41be3c3647213cec3803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A priori error estimate</topic><topic>Adjoints</topic><topic>Approximation</topic><topic>Diffusion</topic><topic>Discretization</topic><topic>Finite element method</topic><topic>Galerkin finite element method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Optimal control problems</topic><topic>Time fractional diffusion equations</topic><topic>Variational discretization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Zhaojie</creatorcontrib><creatorcontrib>Gong, Wei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Zhaojie</au><au>Gong, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element approximation of optimal control problems governed by time fractional diffusion equation</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>71</volume><issue>1</issue><spage>301</spage><epage>318</epage><pages>301-318</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper Galerkin finite element approximation of optimal control problems governed by time fractional diffusion equations is investigated. Piecewise linear polynomials are used to approximate the state and adjoint state, while the control is discretized by variational discretization method. A priori error estimates for the semi-discrete approximations of the state, adjoint state and control are derived. Furthermore, we also discuss the fully discrete scheme for the control problems. A finite difference method developed in Lin and Xu (2007) is used to discretize the time fractional derivative. Fully discrete first order optimality condition is developed based on ‘first discretize, then optimize’ approach. The stability and truncation error of the fully discrete scheme are analyzed. Numerical example is given to illustrate the theoretical findings.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2015.11.014</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2016-01, Vol.71 (1), p.301-318
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_1786203072
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects A priori error estimate
Adjoints
Approximation
Diffusion
Discretization
Finite element method
Galerkin finite element method
Mathematical analysis
Mathematical models
Optimal control
Optimal control problems
Time fractional diffusion equations
Variational discretization
title Finite element approximation of optimal control problems governed by time fractional diffusion equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20approximation%20of%20optimal%20control%20problems%20governed%20by%20time%20fractional%20diffusion%20equation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Zhou,%20Zhaojie&rft.date=2016-01-01&rft.volume=71&rft.issue=1&rft.spage=301&rft.epage=318&rft.pages=301-318&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2015.11.014&rft_dat=%3Cproquest_cross%3E1786203072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786203072&rft_id=info:pmid/&rft_els_id=S089812211500557X&rfr_iscdi=true