Achieving High Energy Efficiency and Physical-Layer Security in AF Relaying

For transmitting data in a secret and energy-efficient manner in collaborative amplify-and-forward relay networks, the secure energy efficiency (EE) defined as the secret bits transferred with unit energy is maximized to satisfy each node power constraint and target secrecy rate requirement, based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2016-01, Vol.15 (1), p.740-752
Hauptverfasser: Wang, Dong, Bai, Bo, Chen, Wei, Han, Zhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 752
container_issue 1
container_start_page 740
container_title IEEE transactions on wireless communications
container_volume 15
creator Wang, Dong
Bai, Bo
Chen, Wei
Han, Zhu
description For transmitting data in a secret and energy-efficient manner in collaborative amplify-and-forward relay networks, the secure energy efficiency (EE) defined as the secret bits transferred with unit energy is maximized to satisfy each node power constraint and target secrecy rate requirement, based on physical security framework. The secure EE is maximized by joint source and relay power allocation, which is a nonconvex optimization problem. To cope with this difficulty, a solution scheme and corresponding algorithms are developed by jointly applying fractional programming, exact penalty, alternate search, and difference of convex functions programming. The key idea of the scheme is to convert the primal problem into simple subproblems step by step, such that related methods are adopted. It is verified that, compared with secrecy rate maximization, the proposed scheme improves the secure EE significantly yet with a certain loss of the secrecy rate due to the tradeoff between secure EE and secrecy rate. Furthermore, the proposed scheme achieves higher secure EE and secrecy rate than total transmission power minimization does, while with a certain increase of power consumption. These results indicate that a reasonable balance among secure EE, secrecy rate, and power consumption can be reached by the proposed scheme.
doi_str_mv 10.1109/TWC.2015.2477510
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786196158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7254242</ieee_id><sourcerecordid>1786196158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-4fa986f3501df3cc944b2748e6b4a5c7c26b728187922fc27f49e9e306e927b23</originalsourceid><addsrcrecordid>eNpdkE1LAzEURQdRsFb3gpuAGzdTkzf5mCxLaa1YULTicsikL23KdFqTjjD_3iktLly9uzj38jhJcsvogDGqH-dfowFQJgbAlRKMniU9JkSeAvD8_JAzmTJQ8jK5inFNKVNSiF7yMrQrjz--XpKpX67IuMawbMnYOW891rYlpl6Qt1UbvTVVOjMtBvKBtgl-3xJfk-GEvGNl2m7hOrlwpop4c7r95HMyno-m6ez16Xk0nKU203Sfcmd0Ll0mKFu4zFrNeQmK5yhLboRVFmSpIGe50gDOgnJco8aMStSgSsj6ycNxdxe23w3GfbHx0WJVmRq3TSyYyiXTkom8Q-__oettE-ruu44SEjTjgnYUPVI2bGMM6Ipd8BsT2oLR4mC36OwWB7vFyW5XuTtWPCL-4QoEBw7ZL36pc2Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756291450</pqid></control><display><type>article</type><title>Achieving High Energy Efficiency and Physical-Layer Security in AF Relaying</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Dong ; Bai, Bo ; Chen, Wei ; Han, Zhu</creator><creatorcontrib>Wang, Dong ; Bai, Bo ; Chen, Wei ; Han, Zhu</creatorcontrib><description>For transmitting data in a secret and energy-efficient manner in collaborative amplify-and-forward relay networks, the secure energy efficiency (EE) defined as the secret bits transferred with unit energy is maximized to satisfy each node power constraint and target secrecy rate requirement, based on physical security framework. The secure EE is maximized by joint source and relay power allocation, which is a nonconvex optimization problem. To cope with this difficulty, a solution scheme and corresponding algorithms are developed by jointly applying fractional programming, exact penalty, alternate search, and difference of convex functions programming. The key idea of the scheme is to convert the primal problem into simple subproblems step by step, such that related methods are adopted. It is verified that, compared with secrecy rate maximization, the proposed scheme improves the secure EE significantly yet with a certain loss of the secrecy rate due to the tradeoff between secure EE and secrecy rate. Furthermore, the proposed scheme achieves higher secure EE and secrecy rate than total transmission power minimization does, while with a certain increase of power consumption. These results indicate that a reasonable balance among secure EE, secrecy rate, and power consumption can be reached by the proposed scheme.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2015.2477510</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; amplify-and-forward ; Energy management ; Linear programming ; Maximization ; Optimization ; Physical layer ; Physical layer security ; power allocation ; Power consumption ; Power demand ; Programming ; relay networks ; Relays ; Searching ; Secrecy aspects ; secure energy efficiency ; Security</subject><ispartof>IEEE transactions on wireless communications, 2016-01, Vol.15 (1), p.740-752</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-4fa986f3501df3cc944b2748e6b4a5c7c26b728187922fc27f49e9e306e927b23</citedby><cites>FETCH-LOGICAL-c390t-4fa986f3501df3cc944b2748e6b4a5c7c26b728187922fc27f49e9e306e927b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7254242$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7254242$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Bai, Bo</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><title>Achieving High Energy Efficiency and Physical-Layer Security in AF Relaying</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>For transmitting data in a secret and energy-efficient manner in collaborative amplify-and-forward relay networks, the secure energy efficiency (EE) defined as the secret bits transferred with unit energy is maximized to satisfy each node power constraint and target secrecy rate requirement, based on physical security framework. The secure EE is maximized by joint source and relay power allocation, which is a nonconvex optimization problem. To cope with this difficulty, a solution scheme and corresponding algorithms are developed by jointly applying fractional programming, exact penalty, alternate search, and difference of convex functions programming. The key idea of the scheme is to convert the primal problem into simple subproblems step by step, such that related methods are adopted. It is verified that, compared with secrecy rate maximization, the proposed scheme improves the secure EE significantly yet with a certain loss of the secrecy rate due to the tradeoff between secure EE and secrecy rate. Furthermore, the proposed scheme achieves higher secure EE and secrecy rate than total transmission power minimization does, while with a certain increase of power consumption. These results indicate that a reasonable balance among secure EE, secrecy rate, and power consumption can be reached by the proposed scheme.</description><subject>Algorithms</subject><subject>amplify-and-forward</subject><subject>Energy management</subject><subject>Linear programming</subject><subject>Maximization</subject><subject>Optimization</subject><subject>Physical layer</subject><subject>Physical layer security</subject><subject>power allocation</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Programming</subject><subject>relay networks</subject><subject>Relays</subject><subject>Searching</subject><subject>Secrecy aspects</subject><subject>secure energy efficiency</subject><subject>Security</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEURQdRsFb3gpuAGzdTkzf5mCxLaa1YULTicsikL23KdFqTjjD_3iktLly9uzj38jhJcsvogDGqH-dfowFQJgbAlRKMniU9JkSeAvD8_JAzmTJQ8jK5inFNKVNSiF7yMrQrjz--XpKpX67IuMawbMnYOW891rYlpl6Qt1UbvTVVOjMtBvKBtgl-3xJfk-GEvGNl2m7hOrlwpop4c7r95HMyno-m6ez16Xk0nKU203Sfcmd0Ll0mKFu4zFrNeQmK5yhLboRVFmSpIGe50gDOgnJco8aMStSgSsj6ycNxdxe23w3GfbHx0WJVmRq3TSyYyiXTkom8Q-__oettE-ruu44SEjTjgnYUPVI2bGMM6Ipd8BsT2oLR4mC36OwWB7vFyW5XuTtWPCL-4QoEBw7ZL36pc2Y</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Wang, Dong</creator><creator>Bai, Bo</creator><creator>Chen, Wei</creator><creator>Han, Zhu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201601</creationdate><title>Achieving High Energy Efficiency and Physical-Layer Security in AF Relaying</title><author>Wang, Dong ; Bai, Bo ; Chen, Wei ; Han, Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-4fa986f3501df3cc944b2748e6b4a5c7c26b728187922fc27f49e9e306e927b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>amplify-and-forward</topic><topic>Energy management</topic><topic>Linear programming</topic><topic>Maximization</topic><topic>Optimization</topic><topic>Physical layer</topic><topic>Physical layer security</topic><topic>power allocation</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Programming</topic><topic>relay networks</topic><topic>Relays</topic><topic>Searching</topic><topic>Secrecy aspects</topic><topic>secure energy efficiency</topic><topic>Security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Bai, Bo</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Dong</au><au>Bai, Bo</au><au>Chen, Wei</au><au>Han, Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving High Energy Efficiency and Physical-Layer Security in AF Relaying</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2016-01</date><risdate>2016</risdate><volume>15</volume><issue>1</issue><spage>740</spage><epage>752</epage><pages>740-752</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>For transmitting data in a secret and energy-efficient manner in collaborative amplify-and-forward relay networks, the secure energy efficiency (EE) defined as the secret bits transferred with unit energy is maximized to satisfy each node power constraint and target secrecy rate requirement, based on physical security framework. The secure EE is maximized by joint source and relay power allocation, which is a nonconvex optimization problem. To cope with this difficulty, a solution scheme and corresponding algorithms are developed by jointly applying fractional programming, exact penalty, alternate search, and difference of convex functions programming. The key idea of the scheme is to convert the primal problem into simple subproblems step by step, such that related methods are adopted. It is verified that, compared with secrecy rate maximization, the proposed scheme improves the secure EE significantly yet with a certain loss of the secrecy rate due to the tradeoff between secure EE and secrecy rate. Furthermore, the proposed scheme achieves higher secure EE and secrecy rate than total transmission power minimization does, while with a certain increase of power consumption. These results indicate that a reasonable balance among secure EE, secrecy rate, and power consumption can be reached by the proposed scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2015.2477510</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2016-01, Vol.15 (1), p.740-752
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_miscellaneous_1786196158
source IEEE Electronic Library (IEL)
subjects Algorithms
amplify-and-forward
Energy management
Linear programming
Maximization
Optimization
Physical layer
Physical layer security
power allocation
Power consumption
Power demand
Programming
relay networks
Relays
Searching
Secrecy aspects
secure energy efficiency
Security
title Achieving High Energy Efficiency and Physical-Layer Security in AF Relaying
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20High%20Energy%20Efficiency%20and%20Physical-Layer%20Security%20in%20AF%20Relaying&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Wang,%20Dong&rft.date=2016-01&rft.volume=15&rft.issue=1&rft.spage=740&rft.epage=752&rft.pages=740-752&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2015.2477510&rft_dat=%3Cproquest_RIE%3E1786196158%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1756291450&rft_id=info:pmid/&rft_ieee_id=7254242&rfr_iscdi=true