Achieving High Energy Efficiency and Physical-Layer Security in AF Relaying
For transmitting data in a secret and energy-efficient manner in collaborative amplify-and-forward relay networks, the secure energy efficiency (EE) defined as the secret bits transferred with unit energy is maximized to satisfy each node power constraint and target secrecy rate requirement, based o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2016-01, Vol.15 (1), p.740-752 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 752 |
---|---|
container_issue | 1 |
container_start_page | 740 |
container_title | IEEE transactions on wireless communications |
container_volume | 15 |
creator | Wang, Dong Bai, Bo Chen, Wei Han, Zhu |
description | For transmitting data in a secret and energy-efficient manner in collaborative amplify-and-forward relay networks, the secure energy efficiency (EE) defined as the secret bits transferred with unit energy is maximized to satisfy each node power constraint and target secrecy rate requirement, based on physical security framework. The secure EE is maximized by joint source and relay power allocation, which is a nonconvex optimization problem. To cope with this difficulty, a solution scheme and corresponding algorithms are developed by jointly applying fractional programming, exact penalty, alternate search, and difference of convex functions programming. The key idea of the scheme is to convert the primal problem into simple subproblems step by step, such that related methods are adopted. It is verified that, compared with secrecy rate maximization, the proposed scheme improves the secure EE significantly yet with a certain loss of the secrecy rate due to the tradeoff between secure EE and secrecy rate. Furthermore, the proposed scheme achieves higher secure EE and secrecy rate than total transmission power minimization does, while with a certain increase of power consumption. These results indicate that a reasonable balance among secure EE, secrecy rate, and power consumption can be reached by the proposed scheme. |
doi_str_mv | 10.1109/TWC.2015.2477510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786196158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7254242</ieee_id><sourcerecordid>1786196158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-4fa986f3501df3cc944b2748e6b4a5c7c26b728187922fc27f49e9e306e927b23</originalsourceid><addsrcrecordid>eNpdkE1LAzEURQdRsFb3gpuAGzdTkzf5mCxLaa1YULTicsikL23KdFqTjjD_3iktLly9uzj38jhJcsvogDGqH-dfowFQJgbAlRKMniU9JkSeAvD8_JAzmTJQ8jK5inFNKVNSiF7yMrQrjz--XpKpX67IuMawbMnYOW891rYlpl6Qt1UbvTVVOjMtBvKBtgl-3xJfk-GEvGNl2m7hOrlwpop4c7r95HMyno-m6ez16Xk0nKU203Sfcmd0Ll0mKFu4zFrNeQmK5yhLboRVFmSpIGe50gDOgnJco8aMStSgSsj6ycNxdxe23w3GfbHx0WJVmRq3TSyYyiXTkom8Q-__oettE-ruu44SEjTjgnYUPVI2bGMM6Ipd8BsT2oLR4mC36OwWB7vFyW5XuTtWPCL-4QoEBw7ZL36pc2Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1756291450</pqid></control><display><type>article</type><title>Achieving High Energy Efficiency and Physical-Layer Security in AF Relaying</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Dong ; Bai, Bo ; Chen, Wei ; Han, Zhu</creator><creatorcontrib>Wang, Dong ; Bai, Bo ; Chen, Wei ; Han, Zhu</creatorcontrib><description>For transmitting data in a secret and energy-efficient manner in collaborative amplify-and-forward relay networks, the secure energy efficiency (EE) defined as the secret bits transferred with unit energy is maximized to satisfy each node power constraint and target secrecy rate requirement, based on physical security framework. The secure EE is maximized by joint source and relay power allocation, which is a nonconvex optimization problem. To cope with this difficulty, a solution scheme and corresponding algorithms are developed by jointly applying fractional programming, exact penalty, alternate search, and difference of convex functions programming. The key idea of the scheme is to convert the primal problem into simple subproblems step by step, such that related methods are adopted. It is verified that, compared with secrecy rate maximization, the proposed scheme improves the secure EE significantly yet with a certain loss of the secrecy rate due to the tradeoff between secure EE and secrecy rate. Furthermore, the proposed scheme achieves higher secure EE and secrecy rate than total transmission power minimization does, while with a certain increase of power consumption. These results indicate that a reasonable balance among secure EE, secrecy rate, and power consumption can be reached by the proposed scheme.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2015.2477510</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; amplify-and-forward ; Energy management ; Linear programming ; Maximization ; Optimization ; Physical layer ; Physical layer security ; power allocation ; Power consumption ; Power demand ; Programming ; relay networks ; Relays ; Searching ; Secrecy aspects ; secure energy efficiency ; Security</subject><ispartof>IEEE transactions on wireless communications, 2016-01, Vol.15 (1), p.740-752</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-4fa986f3501df3cc944b2748e6b4a5c7c26b728187922fc27f49e9e306e927b23</citedby><cites>FETCH-LOGICAL-c390t-4fa986f3501df3cc944b2748e6b4a5c7c26b728187922fc27f49e9e306e927b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7254242$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7254242$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Bai, Bo</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><title>Achieving High Energy Efficiency and Physical-Layer Security in AF Relaying</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>For transmitting data in a secret and energy-efficient manner in collaborative amplify-and-forward relay networks, the secure energy efficiency (EE) defined as the secret bits transferred with unit energy is maximized to satisfy each node power constraint and target secrecy rate requirement, based on physical security framework. The secure EE is maximized by joint source and relay power allocation, which is a nonconvex optimization problem. To cope with this difficulty, a solution scheme and corresponding algorithms are developed by jointly applying fractional programming, exact penalty, alternate search, and difference of convex functions programming. The key idea of the scheme is to convert the primal problem into simple subproblems step by step, such that related methods are adopted. It is verified that, compared with secrecy rate maximization, the proposed scheme improves the secure EE significantly yet with a certain loss of the secrecy rate due to the tradeoff between secure EE and secrecy rate. Furthermore, the proposed scheme achieves higher secure EE and secrecy rate than total transmission power minimization does, while with a certain increase of power consumption. These results indicate that a reasonable balance among secure EE, secrecy rate, and power consumption can be reached by the proposed scheme.</description><subject>Algorithms</subject><subject>amplify-and-forward</subject><subject>Energy management</subject><subject>Linear programming</subject><subject>Maximization</subject><subject>Optimization</subject><subject>Physical layer</subject><subject>Physical layer security</subject><subject>power allocation</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Programming</subject><subject>relay networks</subject><subject>Relays</subject><subject>Searching</subject><subject>Secrecy aspects</subject><subject>secure energy efficiency</subject><subject>Security</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEURQdRsFb3gpuAGzdTkzf5mCxLaa1YULTicsikL23KdFqTjjD_3iktLly9uzj38jhJcsvogDGqH-dfowFQJgbAlRKMniU9JkSeAvD8_JAzmTJQ8jK5inFNKVNSiF7yMrQrjz--XpKpX67IuMawbMnYOW891rYlpl6Qt1UbvTVVOjMtBvKBtgl-3xJfk-GEvGNl2m7hOrlwpop4c7r95HMyno-m6ez16Xk0nKU203Sfcmd0Ll0mKFu4zFrNeQmK5yhLboRVFmSpIGe50gDOgnJco8aMStSgSsj6ycNxdxe23w3GfbHx0WJVmRq3TSyYyiXTkom8Q-__oettE-ruu44SEjTjgnYUPVI2bGMM6Ipd8BsT2oLR4mC36OwWB7vFyW5XuTtWPCL-4QoEBw7ZL36pc2Y</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Wang, Dong</creator><creator>Bai, Bo</creator><creator>Chen, Wei</creator><creator>Han, Zhu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201601</creationdate><title>Achieving High Energy Efficiency and Physical-Layer Security in AF Relaying</title><author>Wang, Dong ; Bai, Bo ; Chen, Wei ; Han, Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-4fa986f3501df3cc944b2748e6b4a5c7c26b728187922fc27f49e9e306e927b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>amplify-and-forward</topic><topic>Energy management</topic><topic>Linear programming</topic><topic>Maximization</topic><topic>Optimization</topic><topic>Physical layer</topic><topic>Physical layer security</topic><topic>power allocation</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Programming</topic><topic>relay networks</topic><topic>Relays</topic><topic>Searching</topic><topic>Secrecy aspects</topic><topic>secure energy efficiency</topic><topic>Security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Bai, Bo</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Dong</au><au>Bai, Bo</au><au>Chen, Wei</au><au>Han, Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving High Energy Efficiency and Physical-Layer Security in AF Relaying</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2016-01</date><risdate>2016</risdate><volume>15</volume><issue>1</issue><spage>740</spage><epage>752</epage><pages>740-752</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>For transmitting data in a secret and energy-efficient manner in collaborative amplify-and-forward relay networks, the secure energy efficiency (EE) defined as the secret bits transferred with unit energy is maximized to satisfy each node power constraint and target secrecy rate requirement, based on physical security framework. The secure EE is maximized by joint source and relay power allocation, which is a nonconvex optimization problem. To cope with this difficulty, a solution scheme and corresponding algorithms are developed by jointly applying fractional programming, exact penalty, alternate search, and difference of convex functions programming. The key idea of the scheme is to convert the primal problem into simple subproblems step by step, such that related methods are adopted. It is verified that, compared with secrecy rate maximization, the proposed scheme improves the secure EE significantly yet with a certain loss of the secrecy rate due to the tradeoff between secure EE and secrecy rate. Furthermore, the proposed scheme achieves higher secure EE and secrecy rate than total transmission power minimization does, while with a certain increase of power consumption. These results indicate that a reasonable balance among secure EE, secrecy rate, and power consumption can be reached by the proposed scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2015.2477510</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2016-01, Vol.15 (1), p.740-752 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786196158 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms amplify-and-forward Energy management Linear programming Maximization Optimization Physical layer Physical layer security power allocation Power consumption Power demand Programming relay networks Relays Searching Secrecy aspects secure energy efficiency Security |
title | Achieving High Energy Efficiency and Physical-Layer Security in AF Relaying |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20High%20Energy%20Efficiency%20and%20Physical-Layer%20Security%20in%20AF%20Relaying&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Wang,%20Dong&rft.date=2016-01&rft.volume=15&rft.issue=1&rft.spage=740&rft.epage=752&rft.pages=740-752&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2015.2477510&rft_dat=%3Cproquest_RIE%3E1786196158%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1756291450&rft_id=info:pmid/&rft_ieee_id=7254242&rfr_iscdi=true |