Laser welded superelastic Cu–Al–Mn shape memory alloy wires

This paper presents the first study on welding of Cu-based shape memory alloys. The superelastic wires used in the investigation had a nominal composition of Cu–17Al–11.4Mn (at.%). The pulsed Nd:YAG spot welding process altered the original bamboo-like microstructure of the base metal to a fusion zo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials & design 2016, Vol.90, p.122-128
Hauptverfasser: Oliveira, J.P., Panton, B., Zeng, Z., Omori, T., Zhou, Y., Miranda, R.M., Braz Fernandes, F.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue
container_start_page 122
container_title Materials & design
container_volume 90
creator Oliveira, J.P.
Panton, B.
Zeng, Z.
Omori, T.
Zhou, Y.
Miranda, R.M.
Braz Fernandes, F.M.
description This paper presents the first study on welding of Cu-based shape memory alloys. The superelastic wires used in the investigation had a nominal composition of Cu–17Al–11.4Mn (at.%). The pulsed Nd:YAG spot welding process altered the original bamboo-like microstructure of the base metal to a fusion zone with fine equiaxed grains. Micro-load-indentation depth analysis revealed that the grain refinement increased the ductility of the fusion zone compared to the base material. Tensile tests did not show any significant difference between base material and welded specimens, with failure occurring far away from the welds in the larger grained base metal. Mechanical cycling and superelastic behavior of the welded joints showed a faster stabilization of the hysteretic response than the base material, which is beneficial for applications where energy absorption is required. The Cu–Al–Mn superelastic alloy had a very high weldability and superior properties compared to other laser welded shape memory alloys, such as NiTi. [Display omitted] •A first study on welding of Cu-based shape memory alloys is presented.•No degradation of tensile properties was observed in the welds.•Fracture of the welded tensile samples always occurred in the base material.•Welded samples exhibited superelastic behavior.
doi_str_mv 10.1016/j.matdes.2015.10.125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786195421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264127515307036</els_id><sourcerecordid>1786195421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-37f4c314e9f1964b7dc72307c338f27304ae6d8a6fb52b4e4e8329d142da9bee3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIfcMiRS4JfiZMLqKooIBVxgbPl2BuRymmCN6HqjX_gD_kSUsKZy640OzPaGUIuGU0YZdn1JmlM7wATTlmaHFCeHpEZy5WIJSvUMZlRnsmYcZWekjPEDaWcKyFn5HZtEEK0A-_ARTh0EMAb7GsbLYfvz6-FH8fTNsI300HUQNOGfWS8b_fRrg6A5-SkMh7h4m_Pyevq7mX5EK-f7x-Xi3VshSj6WKhKWsEkFBUrMlkqZxUXVI3XvBo_odJA5nKTVWXKSwkScsELxyR3pigBxJxcTb5daN8HwF43NVrw3myhHVAzlWesSCVnI1VOVBtaxACV7kLdmLDXjOpDX3qjp770oa9flKej7GaSwRjjo4ag0dawteDGnLbXrq3_N_gBTkN3CA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786195421</pqid></control><display><type>article</type><title>Laser welded superelastic Cu–Al–Mn shape memory alloy wires</title><source>Alma/SFX Local Collection</source><creator>Oliveira, J.P. ; Panton, B. ; Zeng, Z. ; Omori, T. ; Zhou, Y. ; Miranda, R.M. ; Braz Fernandes, F.M.</creator><creatorcontrib>Oliveira, J.P. ; Panton, B. ; Zeng, Z. ; Omori, T. ; Zhou, Y. ; Miranda, R.M. ; Braz Fernandes, F.M.</creatorcontrib><description>This paper presents the first study on welding of Cu-based shape memory alloys. The superelastic wires used in the investigation had a nominal composition of Cu–17Al–11.4Mn (at.%). The pulsed Nd:YAG spot welding process altered the original bamboo-like microstructure of the base metal to a fusion zone with fine equiaxed grains. Micro-load-indentation depth analysis revealed that the grain refinement increased the ductility of the fusion zone compared to the base material. Tensile tests did not show any significant difference between base material and welded specimens, with failure occurring far away from the welds in the larger grained base metal. Mechanical cycling and superelastic behavior of the welded joints showed a faster stabilization of the hysteretic response than the base material, which is beneficial for applications where energy absorption is required. The Cu–Al–Mn superelastic alloy had a very high weldability and superior properties compared to other laser welded shape memory alloys, such as NiTi. [Display omitted] •A first study on welding of Cu-based shape memory alloys is presented.•No degradation of tensile properties was observed in the welds.•Fracture of the welded tensile samples always occurred in the base material.•Welded samples exhibited superelastic behavior.</description><identifier>ISSN: 0264-1275</identifier><identifier>EISSN: 1873-4197</identifier><identifier>DOI: 10.1016/j.matdes.2015.10.125</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Base metal ; COPPER ALLOYS (40 TO 99.3 CU) ; COPPER ALUMINUM ALLOYS ; Copper base alloys ; Cu–Al–Mn ; Intermetallic compounds ; Intermetallics ; Laser beam welding ; LASER WELDING ; LASERS ; Nickel titanides ; Shape memory alloys ; SUPERELASTICITY ; WELDING ; WIRE</subject><ispartof>Materials &amp; design, 2016, Vol.90, p.122-128</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-37f4c314e9f1964b7dc72307c338f27304ae6d8a6fb52b4e4e8329d142da9bee3</citedby><cites>FETCH-LOGICAL-c339t-37f4c314e9f1964b7dc72307c338f27304ae6d8a6fb52b4e4e8329d142da9bee3</cites><orcidid>0000-0001-6906-1870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Oliveira, J.P.</creatorcontrib><creatorcontrib>Panton, B.</creatorcontrib><creatorcontrib>Zeng, Z.</creatorcontrib><creatorcontrib>Omori, T.</creatorcontrib><creatorcontrib>Zhou, Y.</creatorcontrib><creatorcontrib>Miranda, R.M.</creatorcontrib><creatorcontrib>Braz Fernandes, F.M.</creatorcontrib><title>Laser welded superelastic Cu–Al–Mn shape memory alloy wires</title><title>Materials &amp; design</title><description>This paper presents the first study on welding of Cu-based shape memory alloys. The superelastic wires used in the investigation had a nominal composition of Cu–17Al–11.4Mn (at.%). The pulsed Nd:YAG spot welding process altered the original bamboo-like microstructure of the base metal to a fusion zone with fine equiaxed grains. Micro-load-indentation depth analysis revealed that the grain refinement increased the ductility of the fusion zone compared to the base material. Tensile tests did not show any significant difference between base material and welded specimens, with failure occurring far away from the welds in the larger grained base metal. Mechanical cycling and superelastic behavior of the welded joints showed a faster stabilization of the hysteretic response than the base material, which is beneficial for applications where energy absorption is required. The Cu–Al–Mn superelastic alloy had a very high weldability and superior properties compared to other laser welded shape memory alloys, such as NiTi. [Display omitted] •A first study on welding of Cu-based shape memory alloys is presented.•No degradation of tensile properties was observed in the welds.•Fracture of the welded tensile samples always occurred in the base material.•Welded samples exhibited superelastic behavior.</description><subject>Base metal</subject><subject>COPPER ALLOYS (40 TO 99.3 CU)</subject><subject>COPPER ALUMINUM ALLOYS</subject><subject>Copper base alloys</subject><subject>Cu–Al–Mn</subject><subject>Intermetallic compounds</subject><subject>Intermetallics</subject><subject>Laser beam welding</subject><subject>LASER WELDING</subject><subject>LASERS</subject><subject>Nickel titanides</subject><subject>Shape memory alloys</subject><subject>SUPERELASTICITY</subject><subject>WELDING</subject><subject>WIRE</subject><issn>0264-1275</issn><issn>1873-4197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIfcMiRS4JfiZMLqKooIBVxgbPl2BuRymmCN6HqjX_gD_kSUsKZy640OzPaGUIuGU0YZdn1JmlM7wATTlmaHFCeHpEZy5WIJSvUMZlRnsmYcZWekjPEDaWcKyFn5HZtEEK0A-_ARTh0EMAb7GsbLYfvz6-FH8fTNsI300HUQNOGfWS8b_fRrg6A5-SkMh7h4m_Pyevq7mX5EK-f7x-Xi3VshSj6WKhKWsEkFBUrMlkqZxUXVI3XvBo_odJA5nKTVWXKSwkScsELxyR3pigBxJxcTb5daN8HwF43NVrw3myhHVAzlWesSCVnI1VOVBtaxACV7kLdmLDXjOpDX3qjp770oa9flKej7GaSwRjjo4ag0dawteDGnLbXrq3_N_gBTkN3CA</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Oliveira, J.P.</creator><creator>Panton, B.</creator><creator>Zeng, Z.</creator><creator>Omori, T.</creator><creator>Zhou, Y.</creator><creator>Miranda, R.M.</creator><creator>Braz Fernandes, F.M.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6906-1870</orcidid></search><sort><creationdate>2016</creationdate><title>Laser welded superelastic Cu–Al–Mn shape memory alloy wires</title><author>Oliveira, J.P. ; Panton, B. ; Zeng, Z. ; Omori, T. ; Zhou, Y. ; Miranda, R.M. ; Braz Fernandes, F.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-37f4c314e9f1964b7dc72307c338f27304ae6d8a6fb52b4e4e8329d142da9bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Base metal</topic><topic>COPPER ALLOYS (40 TO 99.3 CU)</topic><topic>COPPER ALUMINUM ALLOYS</topic><topic>Copper base alloys</topic><topic>Cu–Al–Mn</topic><topic>Intermetallic compounds</topic><topic>Intermetallics</topic><topic>Laser beam welding</topic><topic>LASER WELDING</topic><topic>LASERS</topic><topic>Nickel titanides</topic><topic>Shape memory alloys</topic><topic>SUPERELASTICITY</topic><topic>WELDING</topic><topic>WIRE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, J.P.</creatorcontrib><creatorcontrib>Panton, B.</creatorcontrib><creatorcontrib>Zeng, Z.</creatorcontrib><creatorcontrib>Omori, T.</creatorcontrib><creatorcontrib>Zhou, Y.</creatorcontrib><creatorcontrib>Miranda, R.M.</creatorcontrib><creatorcontrib>Braz Fernandes, F.M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>Materials &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveira, J.P.</au><au>Panton, B.</au><au>Zeng, Z.</au><au>Omori, T.</au><au>Zhou, Y.</au><au>Miranda, R.M.</au><au>Braz Fernandes, F.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser welded superelastic Cu–Al–Mn shape memory alloy wires</atitle><jtitle>Materials &amp; design</jtitle><date>2016</date><risdate>2016</risdate><volume>90</volume><spage>122</spage><epage>128</epage><pages>122-128</pages><issn>0264-1275</issn><eissn>1873-4197</eissn><abstract>This paper presents the first study on welding of Cu-based shape memory alloys. The superelastic wires used in the investigation had a nominal composition of Cu–17Al–11.4Mn (at.%). The pulsed Nd:YAG spot welding process altered the original bamboo-like microstructure of the base metal to a fusion zone with fine equiaxed grains. Micro-load-indentation depth analysis revealed that the grain refinement increased the ductility of the fusion zone compared to the base material. Tensile tests did not show any significant difference between base material and welded specimens, with failure occurring far away from the welds in the larger grained base metal. Mechanical cycling and superelastic behavior of the welded joints showed a faster stabilization of the hysteretic response than the base material, which is beneficial for applications where energy absorption is required. The Cu–Al–Mn superelastic alloy had a very high weldability and superior properties compared to other laser welded shape memory alloys, such as NiTi. [Display omitted] •A first study on welding of Cu-based shape memory alloys is presented.•No degradation of tensile properties was observed in the welds.•Fracture of the welded tensile samples always occurred in the base material.•Welded samples exhibited superelastic behavior.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.matdes.2015.10.125</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6906-1870</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0264-1275
ispartof Materials & design, 2016, Vol.90, p.122-128
issn 0264-1275
1873-4197
language eng
recordid cdi_proquest_miscellaneous_1786195421
source Alma/SFX Local Collection
subjects Base metal
COPPER ALLOYS (40 TO 99.3 CU)
COPPER ALUMINUM ALLOYS
Copper base alloys
Cu–Al–Mn
Intermetallic compounds
Intermetallics
Laser beam welding
LASER WELDING
LASERS
Nickel titanides
Shape memory alloys
SUPERELASTICITY
WELDING
WIRE
title Laser welded superelastic Cu–Al–Mn shape memory alloy wires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T00%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20welded%20superelastic%20Cu%E2%80%93Al%E2%80%93Mn%20shape%20memory%20alloy%20wires&rft.jtitle=Materials%20&%20design&rft.au=Oliveira,%20J.P.&rft.date=2016&rft.volume=90&rft.spage=122&rft.epage=128&rft.pages=122-128&rft.issn=0264-1275&rft.eissn=1873-4197&rft_id=info:doi/10.1016/j.matdes.2015.10.125&rft_dat=%3Cproquest_cross%3E1786195421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786195421&rft_id=info:pmid/&rft_els_id=S0264127515307036&rfr_iscdi=true