Remote Influence of the Tropical Atlantic on the Variability and Trend in North West Australia Summer Rainfall

Rainfall in North West Australia (NWA) has been increasing over the past decades, occurring mainly in the austral summer season (December–March). A range of factors such as decreased land albedo in Australia and increasing anthropogenic aerosols in the Northern Hemisphere, identified using simulatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2012-04, Vol.25 (7), p.2408-2420
Hauptverfasser: Lin, Zhongda, Li, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2420
container_issue 7
container_start_page 2408
container_title Journal of climate
container_volume 25
creator Lin, Zhongda
Li, Yun
description Rainfall in North West Australia (NWA) has been increasing over the past decades, occurring mainly in the austral summer season (December–March). A range of factors such as decreased land albedo in Australia and increasing anthropogenic aerosols in the Northern Hemisphere, identified using simulations from climate models, have been implicated in this wetting trend. However, the impact of land albedo and aerosols on Australian rainfall remains unclear. In addition, previous studies showed that dominant sea surface temperature (SST) signals in the Pacific–Indian Ocean including El Niño–Southern Oscillation (ENSO), ENSO Modoki, and the Indian Ocean dipole mode have no significant impact on the NWA rainfall trend. The present study proposes another viewpoint on the remote influence of tropical Atlantic atmospheric vertical motion on the observed rainfall variability and trend in NWA. It is found that, with the atmospheric ascent instigated by the warming of SST over the tropical Atlantic, a Rossby wave train is emanating southeastward from off the west coast of subtropical South America to the midlatitudes of the South Atlantic Ocean. It then travels eastward embedded in the westerly jet waveguide over the South Atlantic and South Indian Oceans. The eastward-propagated Rossby wave induces an anticyclonic anomaly in the upper troposphere over Australia, which is at the exit of the westerly jet waveguide. This leads to an in situ upper-tropospheric divergence, ascending motion and a lower-tropospheric convergence, and the associated increase in rainfall in NWA. Thus, the increasing trend in atmospheric upward motion induced by the warming trend of SST in the tropical Atlantic may partially explain the observed rainfall trend in NWA.
doi_str_mv 10.1175/JCLI-D-11-00020.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786195352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26191326</jstor_id><sourcerecordid>26191326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-e70482086eb92593eaba19ad4f953443800b7260c1cdd972d91cc933858075463</originalsourceid><addsrcrecordid>eNqFkV9rFDEUxQdRcK39AD4IQRH6MjU3fyePy1brlkWhrfoYspkMzTKTbJPMQ7-92W5REMSX3HDv7x7u4TTNG8DnAJJ_vFpt1u1FC9BijEltPmsWwAluMWPkebPAnWJtJzl_2bzKeYcxEIHxognXborFoXUYxtkF61AcULlz6DbFvbdmRMsymlC8RTE8Dn6Y5M3Wj748IBP6Crr6-oC-xlTu0E-XC1rOuSQzeoNu5mlyCV0bHwYzjq-bF7Vkd_pUT5rvnz_drr60m2-X69Vy01omoLROYtYR3Am3VYQr6szWgDI9GxSnjNEO462sBizYvleS9AqsVZR2vMOSM0FPmrOj7j7F-7mepCefrRurFRfnrEF2AqoWJ_9HGSgqCJO8ou_-QndxTqEa0UoRJZhiqkLv_wWRDhiVot5XKThSNsWckxv0PvnJpAcNWB8S1YdE9UX968dENdSdD0_KJtdkhmSC9fn3IuFSSKkO3Nsjt8slpj_z6hgoEfQXJ6CndQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2814376463</pqid></control><display><type>article</type><title>Remote Influence of the Tropical Atlantic on the Variability and Trend in North West Australia Summer Rainfall</title><source>Jstor Complete Legacy</source><source>AMS Journals (American Meteorological Society)</source><source>EZB Electronic Journals Library</source><creator>Lin, Zhongda ; Li, Yun</creator><creatorcontrib>Lin, Zhongda ; Li, Yun</creatorcontrib><description>Rainfall in North West Australia (NWA) has been increasing over the past decades, occurring mainly in the austral summer season (December–March). A range of factors such as decreased land albedo in Australia and increasing anthropogenic aerosols in the Northern Hemisphere, identified using simulations from climate models, have been implicated in this wetting trend. However, the impact of land albedo and aerosols on Australian rainfall remains unclear. In addition, previous studies showed that dominant sea surface temperature (SST) signals in the Pacific–Indian Ocean including El Niño–Southern Oscillation (ENSO), ENSO Modoki, and the Indian Ocean dipole mode have no significant impact on the NWA rainfall trend. The present study proposes another viewpoint on the remote influence of tropical Atlantic atmospheric vertical motion on the observed rainfall variability and trend in NWA. It is found that, with the atmospheric ascent instigated by the warming of SST over the tropical Atlantic, a Rossby wave train is emanating southeastward from off the west coast of subtropical South America to the midlatitudes of the South Atlantic Ocean. It then travels eastward embedded in the westerly jet waveguide over the South Atlantic and South Indian Oceans. The eastward-propagated Rossby wave induces an anticyclonic anomaly in the upper troposphere over Australia, which is at the exit of the westerly jet waveguide. This leads to an in situ upper-tropospheric divergence, ascending motion and a lower-tropospheric convergence, and the associated increase in rainfall in NWA. Thus, the increasing trend in atmospheric upward motion induced by the warming trend of SST in the tropical Atlantic may partially explain the observed rainfall trend in NWA.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-11-00020.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Aerosols ; Albedo ; Anthropogenic factors ; Atmospheric models ; Atmospherics ; Australia ; Climate models ; Coasts ; Dipoles ; Earth, ocean, space ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Exact sciences and technology ; External geophysics ; Geopotential height ; Human influences ; Land ; Marine ; Meteorology ; Movement ; Northern Hemisphere ; Oceans ; Planetary waves ; Precipitation ; Rain ; Rainfall ; Rainfall variability ; Rossby waves ; Sea surface ; Sea surface temperature ; Southern Oscillation ; Summer ; Summer rainfall ; Surface temperature ; Temperate regions ; Trends ; Tropical atmosphere ; Tropical regions ; Troposphere ; Upper troposphere ; Variability ; Vertical motion ; Wave packets ; Wave propagation ; Wave trains ; Waveguides</subject><ispartof>Journal of climate, 2012-04, Vol.25 (7), p.2408-2420</ispartof><rights>2012 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society 2012</rights><rights>Copyright American Meteorological Society Apr 1, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-e70482086eb92593eaba19ad4f953443800b7260c1cdd972d91cc933858075463</citedby><cites>FETCH-LOGICAL-c461t-e70482086eb92593eaba19ad4f953443800b7260c1cdd972d91cc933858075463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26191326$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26191326$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25767791$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Zhongda</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><title>Remote Influence of the Tropical Atlantic on the Variability and Trend in North West Australia Summer Rainfall</title><title>Journal of climate</title><description>Rainfall in North West Australia (NWA) has been increasing over the past decades, occurring mainly in the austral summer season (December–March). A range of factors such as decreased land albedo in Australia and increasing anthropogenic aerosols in the Northern Hemisphere, identified using simulations from climate models, have been implicated in this wetting trend. However, the impact of land albedo and aerosols on Australian rainfall remains unclear. In addition, previous studies showed that dominant sea surface temperature (SST) signals in the Pacific–Indian Ocean including El Niño–Southern Oscillation (ENSO), ENSO Modoki, and the Indian Ocean dipole mode have no significant impact on the NWA rainfall trend. The present study proposes another viewpoint on the remote influence of tropical Atlantic atmospheric vertical motion on the observed rainfall variability and trend in NWA. It is found that, with the atmospheric ascent instigated by the warming of SST over the tropical Atlantic, a Rossby wave train is emanating southeastward from off the west coast of subtropical South America to the midlatitudes of the South Atlantic Ocean. It then travels eastward embedded in the westerly jet waveguide over the South Atlantic and South Indian Oceans. The eastward-propagated Rossby wave induces an anticyclonic anomaly in the upper troposphere over Australia, which is at the exit of the westerly jet waveguide. This leads to an in situ upper-tropospheric divergence, ascending motion and a lower-tropospheric convergence, and the associated increase in rainfall in NWA. Thus, the increasing trend in atmospheric upward motion induced by the warming trend of SST in the tropical Atlantic may partially explain the observed rainfall trend in NWA.</description><subject>Aerosols</subject><subject>Albedo</subject><subject>Anthropogenic factors</subject><subject>Atmospheric models</subject><subject>Atmospherics</subject><subject>Australia</subject><subject>Climate models</subject><subject>Coasts</subject><subject>Dipoles</subject><subject>Earth, ocean, space</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geopotential height</subject><subject>Human influences</subject><subject>Land</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Movement</subject><subject>Northern Hemisphere</subject><subject>Oceans</subject><subject>Planetary waves</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall variability</subject><subject>Rossby waves</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Southern Oscillation</subject><subject>Summer</subject><subject>Summer rainfall</subject><subject>Surface temperature</subject><subject>Temperate regions</subject><subject>Trends</subject><subject>Tropical atmosphere</subject><subject>Tropical regions</subject><subject>Troposphere</subject><subject>Upper troposphere</subject><subject>Variability</subject><subject>Vertical motion</subject><subject>Wave packets</subject><subject>Wave propagation</subject><subject>Wave trains</subject><subject>Waveguides</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkV9rFDEUxQdRcK39AD4IQRH6MjU3fyePy1brlkWhrfoYspkMzTKTbJPMQ7-92W5REMSX3HDv7x7u4TTNG8DnAJJ_vFpt1u1FC9BijEltPmsWwAluMWPkebPAnWJtJzl_2bzKeYcxEIHxognXborFoXUYxtkF61AcULlz6DbFvbdmRMsymlC8RTE8Dn6Y5M3Wj748IBP6Crr6-oC-xlTu0E-XC1rOuSQzeoNu5mlyCV0bHwYzjq-bF7Vkd_pUT5rvnz_drr60m2-X69Vy01omoLROYtYR3Am3VYQr6szWgDI9GxSnjNEO462sBizYvleS9AqsVZR2vMOSM0FPmrOj7j7F-7mepCefrRurFRfnrEF2AqoWJ_9HGSgqCJO8ou_-QndxTqEa0UoRJZhiqkLv_wWRDhiVot5XKThSNsWckxv0PvnJpAcNWB8S1YdE9UX968dENdSdD0_KJtdkhmSC9fn3IuFSSKkO3Nsjt8slpj_z6hgoEfQXJ6CndQ</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Lin, Zhongda</creator><creator>Li, Yun</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TN</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20120401</creationdate><title>Remote Influence of the Tropical Atlantic on the Variability and Trend in North West Australia Summer Rainfall</title><author>Lin, Zhongda ; Li, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-e70482086eb92593eaba19ad4f953443800b7260c1cdd972d91cc933858075463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerosols</topic><topic>Albedo</topic><topic>Anthropogenic factors</topic><topic>Atmospheric models</topic><topic>Atmospherics</topic><topic>Australia</topic><topic>Climate models</topic><topic>Coasts</topic><topic>Dipoles</topic><topic>Earth, ocean, space</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geopotential height</topic><topic>Human influences</topic><topic>Land</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Movement</topic><topic>Northern Hemisphere</topic><topic>Oceans</topic><topic>Planetary waves</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall variability</topic><topic>Rossby waves</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Southern Oscillation</topic><topic>Summer</topic><topic>Summer rainfall</topic><topic>Surface temperature</topic><topic>Temperate regions</topic><topic>Trends</topic><topic>Tropical atmosphere</topic><topic>Tropical regions</topic><topic>Troposphere</topic><topic>Upper troposphere</topic><topic>Variability</topic><topic>Vertical motion</topic><topic>Wave packets</topic><topic>Wave propagation</topic><topic>Wave trains</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Zhongda</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>ProQuest Military Database</collection><collection>ProQuest Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Zhongda</au><au>Li, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote Influence of the Tropical Atlantic on the Variability and Trend in North West Australia Summer Rainfall</atitle><jtitle>Journal of climate</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>25</volume><issue>7</issue><spage>2408</spage><epage>2420</epage><pages>2408-2420</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Rainfall in North West Australia (NWA) has been increasing over the past decades, occurring mainly in the austral summer season (December–March). A range of factors such as decreased land albedo in Australia and increasing anthropogenic aerosols in the Northern Hemisphere, identified using simulations from climate models, have been implicated in this wetting trend. However, the impact of land albedo and aerosols on Australian rainfall remains unclear. In addition, previous studies showed that dominant sea surface temperature (SST) signals in the Pacific–Indian Ocean including El Niño–Southern Oscillation (ENSO), ENSO Modoki, and the Indian Ocean dipole mode have no significant impact on the NWA rainfall trend. The present study proposes another viewpoint on the remote influence of tropical Atlantic atmospheric vertical motion on the observed rainfall variability and trend in NWA. It is found that, with the atmospheric ascent instigated by the warming of SST over the tropical Atlantic, a Rossby wave train is emanating southeastward from off the west coast of subtropical South America to the midlatitudes of the South Atlantic Ocean. It then travels eastward embedded in the westerly jet waveguide over the South Atlantic and South Indian Oceans. The eastward-propagated Rossby wave induces an anticyclonic anomaly in the upper troposphere over Australia, which is at the exit of the westerly jet waveguide. This leads to an in situ upper-tropospheric divergence, ascending motion and a lower-tropospheric convergence, and the associated increase in rainfall in NWA. Thus, the increasing trend in atmospheric upward motion induced by the warming trend of SST in the tropical Atlantic may partially explain the observed rainfall trend in NWA.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-11-00020.1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2012-04, Vol.25 (7), p.2408-2420
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_1786195352
source Jstor Complete Legacy; AMS Journals (American Meteorological Society); EZB Electronic Journals Library
subjects Aerosols
Albedo
Anthropogenic factors
Atmospheric models
Atmospherics
Australia
Climate models
Coasts
Dipoles
Earth, ocean, space
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Exact sciences and technology
External geophysics
Geopotential height
Human influences
Land
Marine
Meteorology
Movement
Northern Hemisphere
Oceans
Planetary waves
Precipitation
Rain
Rainfall
Rainfall variability
Rossby waves
Sea surface
Sea surface temperature
Southern Oscillation
Summer
Summer rainfall
Surface temperature
Temperate regions
Trends
Tropical atmosphere
Tropical regions
Troposphere
Upper troposphere
Variability
Vertical motion
Wave packets
Wave propagation
Wave trains
Waveguides
title Remote Influence of the Tropical Atlantic on the Variability and Trend in North West Australia Summer Rainfall
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20Influence%20of%20the%20Tropical%20Atlantic%20on%20the%20Variability%20and%20Trend%20in%20North%20West%20Australia%20Summer%20Rainfall&rft.jtitle=Journal%20of%20climate&rft.au=Lin,%20Zhongda&rft.date=2012-04-01&rft.volume=25&rft.issue=7&rft.spage=2408&rft.epage=2420&rft.pages=2408-2420&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-11-00020.1&rft_dat=%3Cjstor_proqu%3E26191326%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2814376463&rft_id=info:pmid/&rft_jstor_id=26191326&rfr_iscdi=true