Carbon-Centered Radical Addition to OC of Amides or Esters as a Route to CO Bond Formations

Among various types of radical reactions, the addition of carbon radicals to unsaturated bonds is a powerful tool for constructing new chemical bonds, in which the typical applied unsaturated substrates include alkenes, alkynes and imines. Carbonyl is perhaps the most common unsaturated group in nat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2014-11, Vol.20 (47), p.15605-15610
Hauptverfasser: Liu, Dong, Tang, Shan, Yi, Hong, Liu, Chao, Qi, Xiaotian, Lan, Yu, Lei, Aiwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15610
container_issue 47
container_start_page 15605
container_title Chemistry : a European journal
container_volume 20
creator Liu, Dong
Tang, Shan
Yi, Hong
Liu, Chao
Qi, Xiaotian
Lan, Yu
Lei, Aiwen
description Among various types of radical reactions, the addition of carbon radicals to unsaturated bonds is a powerful tool for constructing new chemical bonds, in which the typical applied unsaturated substrates include alkenes, alkynes and imines. Carbonyl is perhaps the most common unsaturated group in nature. This work demonstrates a novel CO bond formation through carbon‐centered radical addition to the carbonyl oxygen of amide or ester, in which amide and ester groups are easily activated through the radical process. EPR spectroscopy and radical clock experiments support the radical process for this transformation, and density functional theory (DFT) calculations support the possibility of carbon‐centered radical addition to the carbonyl oxygen of amides or esters. CO bond formation through carbon‐centered radical addition to the carbonyl oxygen of amides or esters is demonstrated, in which amide and ester groups are easily activated through the radical process. EPR spectroscopy and radical‐clock experiments support the radical process for this transformation, and DFT calculations support the possibility of carbon‐centered radical addition to the carbonyl oxygen.
doi_str_mv 10.1002/chem.201404607
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786193383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786193383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5897-31dc528e9816162a4cf37d4702cfac78ef74f87765a6cc90b07b9ebbd38416a63</originalsourceid><addsrcrecordid>eNqFkcFOGzEURS3UiqTAlmXlZTcTnu0Ze7xMh0CQoJEQkKXlsT1i2pkxtSeCfE_-o3wSv9CJQqPukJ70NudevXcvQqcEJgSAnplH104okBRSDuIAjUlGScIEzz6hMchUJDxjcoS-xPgTACRn7BCNaEbzFAQbI13oUPouKVzXu-AsvtW2NrrBU2vrvvYd7j1evG3-FNhXeNrW1kXsA57FAY9YD4Nv_ap3W65427wu8HffWXzhQ6u3-niMPle6ie7kfR-h-4vZXTFPrheXV8X0OjFZLkXCiDXDVU7mhBNOdWoqJmwqgJpKG5G7SqRVLobHNDdGQgmilK4sLctTwjVnR-jbzvcp-N8rF3vV1tG4ptGd86uoiMg5kYzl7GOUUwqccQoDOtmhJvgYg6vUU6hbHdaKgNo2oLYNqH0Dg-Dru_eqbJ3d4_8iHwC5A57rxq0_sFPFfHbzv3my09ZD_C97rQ6_FBdMZGr541KR-flDdrekirC_FyShnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622063620</pqid></control><display><type>article</type><title>Carbon-Centered Radical Addition to OC of Amides or Esters as a Route to CO Bond Formations</title><source>Wiley Online Library All Journals</source><creator>Liu, Dong ; Tang, Shan ; Yi, Hong ; Liu, Chao ; Qi, Xiaotian ; Lan, Yu ; Lei, Aiwen</creator><creatorcontrib>Liu, Dong ; Tang, Shan ; Yi, Hong ; Liu, Chao ; Qi, Xiaotian ; Lan, Yu ; Lei, Aiwen</creatorcontrib><description>Among various types of radical reactions, the addition of carbon radicals to unsaturated bonds is a powerful tool for constructing new chemical bonds, in which the typical applied unsaturated substrates include alkenes, alkynes and imines. Carbonyl is perhaps the most common unsaturated group in nature. This work demonstrates a novel CO bond formation through carbon‐centered radical addition to the carbonyl oxygen of amide or ester, in which amide and ester groups are easily activated through the radical process. EPR spectroscopy and radical clock experiments support the radical process for this transformation, and density functional theory (DFT) calculations support the possibility of carbon‐centered radical addition to the carbonyl oxygen of amides or esters. CO bond formation through carbon‐centered radical addition to the carbonyl oxygen of amides or esters is demonstrated, in which amide and ester groups are easily activated through the radical process. EPR spectroscopy and radical‐clock experiments support the radical process for this transformation, and DFT calculations support the possibility of carbon‐centered radical addition to the carbonyl oxygen.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201404607</identifier><identifier>PMID: 25284073</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Amides ; Bonding ; Carbonyls ; CO bond formation ; Esters ; Mathematical analysis ; nickel ; radical reactions ; Radicals ; Transformations ; Unsaturated</subject><ispartof>Chemistry : a European journal, 2014-11, Vol.20 (47), p.15605-15610</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5897-31dc528e9816162a4cf37d4702cfac78ef74f87765a6cc90b07b9ebbd38416a63</citedby><cites>FETCH-LOGICAL-c5897-31dc528e9816162a4cf37d4702cfac78ef74f87765a6cc90b07b9ebbd38416a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201404607$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201404607$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25284073$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Tang, Shan</creatorcontrib><creatorcontrib>Yi, Hong</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Qi, Xiaotian</creatorcontrib><creatorcontrib>Lan, Yu</creatorcontrib><creatorcontrib>Lei, Aiwen</creatorcontrib><title>Carbon-Centered Radical Addition to OC of Amides or Esters as a Route to CO Bond Formations</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>Among various types of radical reactions, the addition of carbon radicals to unsaturated bonds is a powerful tool for constructing new chemical bonds, in which the typical applied unsaturated substrates include alkenes, alkynes and imines. Carbonyl is perhaps the most common unsaturated group in nature. This work demonstrates a novel CO bond formation through carbon‐centered radical addition to the carbonyl oxygen of amide or ester, in which amide and ester groups are easily activated through the radical process. EPR spectroscopy and radical clock experiments support the radical process for this transformation, and density functional theory (DFT) calculations support the possibility of carbon‐centered radical addition to the carbonyl oxygen of amides or esters. CO bond formation through carbon‐centered radical addition to the carbonyl oxygen of amides or esters is demonstrated, in which amide and ester groups are easily activated through the radical process. EPR spectroscopy and radical‐clock experiments support the radical process for this transformation, and DFT calculations support the possibility of carbon‐centered radical addition to the carbonyl oxygen.</description><subject>Amides</subject><subject>Bonding</subject><subject>Carbonyls</subject><subject>CO bond formation</subject><subject>Esters</subject><subject>Mathematical analysis</subject><subject>nickel</subject><subject>radical reactions</subject><subject>Radicals</subject><subject>Transformations</subject><subject>Unsaturated</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkcFOGzEURS3UiqTAlmXlZTcTnu0Ze7xMh0CQoJEQkKXlsT1i2pkxtSeCfE_-o3wSv9CJQqPukJ70NudevXcvQqcEJgSAnplH104okBRSDuIAjUlGScIEzz6hMchUJDxjcoS-xPgTACRn7BCNaEbzFAQbI13oUPouKVzXu-AsvtW2NrrBU2vrvvYd7j1evG3-FNhXeNrW1kXsA57FAY9YD4Nv_ap3W65427wu8HffWXzhQ6u3-niMPle6ie7kfR-h-4vZXTFPrheXV8X0OjFZLkXCiDXDVU7mhBNOdWoqJmwqgJpKG5G7SqRVLobHNDdGQgmilK4sLctTwjVnR-jbzvcp-N8rF3vV1tG4ptGd86uoiMg5kYzl7GOUUwqccQoDOtmhJvgYg6vUU6hbHdaKgNo2oLYNqH0Dg-Dru_eqbJ3d4_8iHwC5A57rxq0_sFPFfHbzv3my09ZD_C97rQ6_FBdMZGr541KR-flDdrekirC_FyShnw</recordid><startdate>20141117</startdate><enddate>20141117</enddate><creator>Liu, Dong</creator><creator>Tang, Shan</creator><creator>Yi, Hong</creator><creator>Liu, Chao</creator><creator>Qi, Xiaotian</creator><creator>Lan, Yu</creator><creator>Lei, Aiwen</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20141117</creationdate><title>Carbon-Centered Radical Addition to OC of Amides or Esters as a Route to CO Bond Formations</title><author>Liu, Dong ; Tang, Shan ; Yi, Hong ; Liu, Chao ; Qi, Xiaotian ; Lan, Yu ; Lei, Aiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5897-31dc528e9816162a4cf37d4702cfac78ef74f87765a6cc90b07b9ebbd38416a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amides</topic><topic>Bonding</topic><topic>Carbonyls</topic><topic>CO bond formation</topic><topic>Esters</topic><topic>Mathematical analysis</topic><topic>nickel</topic><topic>radical reactions</topic><topic>Radicals</topic><topic>Transformations</topic><topic>Unsaturated</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Dong</creatorcontrib><creatorcontrib>Tang, Shan</creatorcontrib><creatorcontrib>Yi, Hong</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Qi, Xiaotian</creatorcontrib><creatorcontrib>Lan, Yu</creatorcontrib><creatorcontrib>Lei, Aiwen</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Dong</au><au>Tang, Shan</au><au>Yi, Hong</au><au>Liu, Chao</au><au>Qi, Xiaotian</au><au>Lan, Yu</au><au>Lei, Aiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-Centered Radical Addition to OC of Amides or Esters as a Route to CO Bond Formations</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2014-11-17</date><risdate>2014</risdate><volume>20</volume><issue>47</issue><spage>15605</spage><epage>15610</epage><pages>15605-15610</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Among various types of radical reactions, the addition of carbon radicals to unsaturated bonds is a powerful tool for constructing new chemical bonds, in which the typical applied unsaturated substrates include alkenes, alkynes and imines. Carbonyl is perhaps the most common unsaturated group in nature. This work demonstrates a novel CO bond formation through carbon‐centered radical addition to the carbonyl oxygen of amide or ester, in which amide and ester groups are easily activated through the radical process. EPR spectroscopy and radical clock experiments support the radical process for this transformation, and density functional theory (DFT) calculations support the possibility of carbon‐centered radical addition to the carbonyl oxygen of amides or esters. CO bond formation through carbon‐centered radical addition to the carbonyl oxygen of amides or esters is demonstrated, in which amide and ester groups are easily activated through the radical process. EPR spectroscopy and radical‐clock experiments support the radical process for this transformation, and DFT calculations support the possibility of carbon‐centered radical addition to the carbonyl oxygen.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25284073</pmid><doi>10.1002/chem.201404607</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2014-11, Vol.20 (47), p.15605-15610
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_1786193383
source Wiley Online Library All Journals
subjects Amides
Bonding
Carbonyls
CO bond formation
Esters
Mathematical analysis
nickel
radical reactions
Radicals
Transformations
Unsaturated
title Carbon-Centered Radical Addition to OC of Amides or Esters as a Route to CO Bond Formations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-Centered%20Radical%20Addition%20to%20O%EF%A3%BEC%20of%20Amides%20or%20Esters%20as%20a%20Route%20to%20C%EF%A3%BFO%20Bond%20Formations&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Liu,%20Dong&rft.date=2014-11-17&rft.volume=20&rft.issue=47&rft.spage=15605&rft.epage=15610&rft.pages=15605-15610&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201404607&rft_dat=%3Cproquest_cross%3E1786193383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622063620&rft_id=info:pmid/25284073&rfr_iscdi=true