Fluctuation–Dissipation Supplemented by Nonlinearity: A Climate-Dependent Subgrid-Scale Parameterization in Low-Order Climate Models

Climate-system models use a multitude of parameterization schemes for small-scale processes. These should respond to externally forced climate variability in an appropriate manner so as to reflect the response of the parameterized process to a changing climate. The most attractive route to achieve s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2013-06, Vol.70 (6), p.1833-1846
Hauptverfasser: Achatz, Ulrich, Lobl, Ulrike, Dolaptchiev, Stamen I, Gritsun, Andrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1846
container_issue 6
container_start_page 1833
container_title Journal of the atmospheric sciences
container_volume 70
creator Achatz, Ulrich
Lobl, Ulrike
Dolaptchiev, Stamen I
Gritsun, Andrey
description Climate-system models use a multitude of parameterization schemes for small-scale processes. These should respond to externally forced climate variability in an appropriate manner so as to reflect the response of the parameterized process to a changing climate. The most attractive route to achieve such a behavior would certainly be provided by theoretical understanding sufficiently deep to enable the a priori design of climate-sensitive parameterization schemes. An alternative path might, however, be helpful when the parameter tuning involved in the development of a scheme is objective enough so that these parameters can be described as functions of the statistics of the climate system. Provided that the dynamics of the process in question is sufficiently stochastic, and that the external forcing is not too strong, the fluctuation-dissipation theorem (FDT) might be a tool to predict from the statistics of a system (e.g., the atmosphere) how an objectively tuned parameterization should respond to external forcing (e.g., by anomalous sea surface temperatures). This problem is addressed within the framework of low-order (reduced) models for barotropic flow on the sphere, based on a few optimal basis functions and using an empirical linear subgrid-scale (SGS) closure. A reduced variant of quasi-Gaussian FDT (rqG-FDT) is used to predict the response of the SGS closure to anomalous local vorticity forcing. At sufficiently weak forcing, use of the rqG-FDT is found to systematically improve the agreement between the response of a reduced model and that of a classic spectral code for the solution of the barotropic vorticity equation.
doi_str_mv 10.1175/JAS-D-12-0229.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786192716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1372056748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-d600c566138d65e4dfa2cb313fcf77a8f6dd9177a736044b6e81e39c3ae14ade3</originalsourceid><addsrcrecordid>eNqFkT1v2zAQhokiAeo4nbsK6NKFNj8kUupm2HGTwokLOJkJmjwVDGhJISUU7pSpf6D_ML8kdNwsWXLLfeB5D7h7EfpMyYRSWUx_zDZ4gSnDhLFqQj-gES0YwSQX1QkakTTFecXKj-gsxnuSgkk6Qn-XfjD9oHvXNk-P_xYuRte9dNlm6DoPO2h6sNl2n920jXcN6OD6_bdsls292-ke8AI6aGzCkmL7KziLN0Z7yH7qoHfQQ3B_jgtdk63a33gdLIRXdXbdWvDxHJ3W2kf49D-P0d3y4nZ-iVfr71fz2QobLkWPrSDEFEJQXlpRQG5rzcyWU16bWkpd1sLaiqZKckHyfCugpMArwzXQXFvgY_T1uLcL7cMAsVc7Fw14rxtoh6ioLAWt0mfE-yiXjBRC5mVCv7xB79shNOmQRIlKSCJZnqjpkTKhjTFArbqQfhD2ihJ1sFAlC9VCUaYOFibpM1_NkUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1369670724</pqid></control><display><type>article</type><title>Fluctuation–Dissipation Supplemented by Nonlinearity: A Climate-Dependent Subgrid-Scale Parameterization in Low-Order Climate Models</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Achatz, Ulrich ; Lobl, Ulrike ; Dolaptchiev, Stamen I ; Gritsun, Andrey</creator><creatorcontrib>Achatz, Ulrich ; Lobl, Ulrike ; Dolaptchiev, Stamen I ; Gritsun, Andrey</creatorcontrib><description>Climate-system models use a multitude of parameterization schemes for small-scale processes. These should respond to externally forced climate variability in an appropriate manner so as to reflect the response of the parameterized process to a changing climate. The most attractive route to achieve such a behavior would certainly be provided by theoretical understanding sufficiently deep to enable the a priori design of climate-sensitive parameterization schemes. An alternative path might, however, be helpful when the parameter tuning involved in the development of a scheme is objective enough so that these parameters can be described as functions of the statistics of the climate system. Provided that the dynamics of the process in question is sufficiently stochastic, and that the external forcing is not too strong, the fluctuation-dissipation theorem (FDT) might be a tool to predict from the statistics of a system (e.g., the atmosphere) how an objectively tuned parameterization should respond to external forcing (e.g., by anomalous sea surface temperatures). This problem is addressed within the framework of low-order (reduced) models for barotropic flow on the sphere, based on a few optimal basis functions and using an empirical linear subgrid-scale (SGS) closure. A reduced variant of quasi-Gaussian FDT (rqG-FDT) is used to predict the response of the SGS closure to anomalous local vorticity forcing. At sufficiently weak forcing, use of the rqG-FDT is found to systematically improve the agreement between the response of a reduced model and that of a classic spectral code for the solution of the barotropic vorticity equation.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-12-0229.1</identifier><identifier>CODEN: JAHSAK</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Climate ; Climate change ; Climate models ; Climate system ; Climate variability ; Closures ; Dynamical systems ; Dynamics ; Fluctuation ; General circulation models ; Information theory ; Mathematical models ; Meteorology ; Parametrization ; Sea surface temperature ; Statistics ; Stochastic processes ; Studies</subject><ispartof>Journal of the atmospheric sciences, 2013-06, Vol.70 (6), p.1833-1846</ispartof><rights>Copyright American Meteorological Society Jun 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-d600c566138d65e4dfa2cb313fcf77a8f6dd9177a736044b6e81e39c3ae14ade3</citedby><cites>FETCH-LOGICAL-c376t-d600c566138d65e4dfa2cb313fcf77a8f6dd9177a736044b6e81e39c3ae14ade3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Achatz, Ulrich</creatorcontrib><creatorcontrib>Lobl, Ulrike</creatorcontrib><creatorcontrib>Dolaptchiev, Stamen I</creatorcontrib><creatorcontrib>Gritsun, Andrey</creatorcontrib><title>Fluctuation–Dissipation Supplemented by Nonlinearity: A Climate-Dependent Subgrid-Scale Parameterization in Low-Order Climate Models</title><title>Journal of the atmospheric sciences</title><description>Climate-system models use a multitude of parameterization schemes for small-scale processes. These should respond to externally forced climate variability in an appropriate manner so as to reflect the response of the parameterized process to a changing climate. The most attractive route to achieve such a behavior would certainly be provided by theoretical understanding sufficiently deep to enable the a priori design of climate-sensitive parameterization schemes. An alternative path might, however, be helpful when the parameter tuning involved in the development of a scheme is objective enough so that these parameters can be described as functions of the statistics of the climate system. Provided that the dynamics of the process in question is sufficiently stochastic, and that the external forcing is not too strong, the fluctuation-dissipation theorem (FDT) might be a tool to predict from the statistics of a system (e.g., the atmosphere) how an objectively tuned parameterization should respond to external forcing (e.g., by anomalous sea surface temperatures). This problem is addressed within the framework of low-order (reduced) models for barotropic flow on the sphere, based on a few optimal basis functions and using an empirical linear subgrid-scale (SGS) closure. A reduced variant of quasi-Gaussian FDT (rqG-FDT) is used to predict the response of the SGS closure to anomalous local vorticity forcing. At sufficiently weak forcing, use of the rqG-FDT is found to systematically improve the agreement between the response of a reduced model and that of a classic spectral code for the solution of the barotropic vorticity equation.</description><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climate system</subject><subject>Climate variability</subject><subject>Closures</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Fluctuation</subject><subject>General circulation models</subject><subject>Information theory</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Parametrization</subject><subject>Sea surface temperature</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Studies</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkT1v2zAQhokiAeo4nbsK6NKFNj8kUupm2HGTwokLOJkJmjwVDGhJISUU7pSpf6D_ML8kdNwsWXLLfeB5D7h7EfpMyYRSWUx_zDZ4gSnDhLFqQj-gES0YwSQX1QkakTTFecXKj-gsxnuSgkk6Qn-XfjD9oHvXNk-P_xYuRte9dNlm6DoPO2h6sNl2n920jXcN6OD6_bdsls292-ke8AI6aGzCkmL7KziLN0Z7yH7qoHfQQ3B_jgtdk63a33gdLIRXdXbdWvDxHJ3W2kf49D-P0d3y4nZ-iVfr71fz2QobLkWPrSDEFEJQXlpRQG5rzcyWU16bWkpd1sLaiqZKckHyfCugpMArwzXQXFvgY_T1uLcL7cMAsVc7Fw14rxtoh6ioLAWt0mfE-yiXjBRC5mVCv7xB79shNOmQRIlKSCJZnqjpkTKhjTFArbqQfhD2ihJ1sFAlC9VCUaYOFibpM1_NkUA</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Achatz, Ulrich</creator><creator>Lobl, Ulrike</creator><creator>Dolaptchiev, Stamen I</creator><creator>Gritsun, Andrey</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20130601</creationdate><title>Fluctuation–Dissipation Supplemented by Nonlinearity: A Climate-Dependent Subgrid-Scale Parameterization in Low-Order Climate Models</title><author>Achatz, Ulrich ; Lobl, Ulrike ; Dolaptchiev, Stamen I ; Gritsun, Andrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-d600c566138d65e4dfa2cb313fcf77a8f6dd9177a736044b6e81e39c3ae14ade3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climate system</topic><topic>Climate variability</topic><topic>Closures</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Fluctuation</topic><topic>General circulation models</topic><topic>Information theory</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Parametrization</topic><topic>Sea surface temperature</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Achatz, Ulrich</creatorcontrib><creatorcontrib>Lobl, Ulrike</creatorcontrib><creatorcontrib>Dolaptchiev, Stamen I</creatorcontrib><creatorcontrib>Gritsun, Andrey</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Achatz, Ulrich</au><au>Lobl, Ulrike</au><au>Dolaptchiev, Stamen I</au><au>Gritsun, Andrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluctuation–Dissipation Supplemented by Nonlinearity: A Climate-Dependent Subgrid-Scale Parameterization in Low-Order Climate Models</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>70</volume><issue>6</issue><spage>1833</spage><epage>1846</epage><pages>1833-1846</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><coden>JAHSAK</coden><abstract>Climate-system models use a multitude of parameterization schemes for small-scale processes. These should respond to externally forced climate variability in an appropriate manner so as to reflect the response of the parameterized process to a changing climate. The most attractive route to achieve such a behavior would certainly be provided by theoretical understanding sufficiently deep to enable the a priori design of climate-sensitive parameterization schemes. An alternative path might, however, be helpful when the parameter tuning involved in the development of a scheme is objective enough so that these parameters can be described as functions of the statistics of the climate system. Provided that the dynamics of the process in question is sufficiently stochastic, and that the external forcing is not too strong, the fluctuation-dissipation theorem (FDT) might be a tool to predict from the statistics of a system (e.g., the atmosphere) how an objectively tuned parameterization should respond to external forcing (e.g., by anomalous sea surface temperatures). This problem is addressed within the framework of low-order (reduced) models for barotropic flow on the sphere, based on a few optimal basis functions and using an empirical linear subgrid-scale (SGS) closure. A reduced variant of quasi-Gaussian FDT (rqG-FDT) is used to predict the response of the SGS closure to anomalous local vorticity forcing. At sufficiently weak forcing, use of the rqG-FDT is found to systematically improve the agreement between the response of a reduced model and that of a classic spectral code for the solution of the barotropic vorticity equation.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-12-0229.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2013-06, Vol.70 (6), p.1833-1846
issn 0022-4928
1520-0469
language eng
recordid cdi_proquest_miscellaneous_1786192716
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Climate
Climate change
Climate models
Climate system
Climate variability
Closures
Dynamical systems
Dynamics
Fluctuation
General circulation models
Information theory
Mathematical models
Meteorology
Parametrization
Sea surface temperature
Statistics
Stochastic processes
Studies
title Fluctuation–Dissipation Supplemented by Nonlinearity: A Climate-Dependent Subgrid-Scale Parameterization in Low-Order Climate Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluctuation%E2%80%93Dissipation%20Supplemented%20by%20Nonlinearity:%20A%20Climate-Dependent%20Subgrid-Scale%20Parameterization%20in%20Low-Order%20Climate%20Models&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Achatz,%20Ulrich&rft.date=2013-06-01&rft.volume=70&rft.issue=6&rft.spage=1833&rft.epage=1846&rft.pages=1833-1846&rft.issn=0022-4928&rft.eissn=1520-0469&rft.coden=JAHSAK&rft_id=info:doi/10.1175/JAS-D-12-0229.1&rft_dat=%3Cproquest_cross%3E1372056748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1369670724&rft_id=info:pmid/&rfr_iscdi=true