Topological Wiener–Wintner theorems for amenable operator semigroups

Inspired by topological Wiener–Wintner theorems we study the mean ergodicity of amenable semigroups of Markov operators on $C(K)$ and show the connection to the convergence of strong and weak ergodic nets. The results are then used to characterize mean ergodicity of Koopman semigroups corresponding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2014-10, Vol.34 (5), p.1674-1698
1. Verfasser: SCHREIBER, MARCO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1698
container_issue 5
container_start_page 1674
container_title Ergodic theory and dynamical systems
container_volume 34
creator SCHREIBER, MARCO
description Inspired by topological Wiener–Wintner theorems we study the mean ergodicity of amenable semigroups of Markov operators on $C(K)$ and show the connection to the convergence of strong and weak ergodic nets. The results are then used to characterize mean ergodicity of Koopman semigroups corresponding to skew product actions on compact group extensions.
doi_str_mv 10.1017/etds.2013.14
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786190886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2013_14</cupid><sourcerecordid>1786190886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-da835f11fcfa2f14d18814af24d51f3d931b939d8c4e36bf9813e881bf2bbdce3</originalsourceid><addsrcrecordid>eNptkLFOwzAQhi0EEiWw8QCRWBhI8MVO4oyoooBUiaWoo-XE55IqiYOdDGy8A2_YJyFVOyDEdKfT9_86fYRcA42BQn6Pg_ZxQoHFwE_IDHhWRJxDfkpmFDiLmEjzc3Lh_ZZSyiBPZ2Sxsr1t7KauVBOua-zQ7b6-13U3TFs4vKN12PrQWBeqFjtVNhjaHp0apovHtt44O_b-kpwZ1Xi8Os6AvC0eV_PnaPn69DJ_WEYVy9kQaSVYagBMZVRigGsQArgyCdcpGKYLBmXBCi0qjiwrTSGA4YSUJilLXSELyO2ht3f2Y0Q_yLb2FTaN6tCOXkIuMiioENmE3vxBt3Z03fSdhDSjSV6wyVRA7g5U5az3Do3sXd0q9ymByr1UuZcq91LlpDAg8RFXbelqvcFfrf8FfgDdg3uZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560279301</pqid></control><display><type>article</type><title>Topological Wiener–Wintner theorems for amenable operator semigroups</title><source>Cambridge University Press Journals Complete</source><creator>SCHREIBER, MARCO</creator><creatorcontrib>SCHREIBER, MARCO</creatorcontrib><description>Inspired by topological Wiener–Wintner theorems we study the mean ergodicity of amenable semigroups of Markov operators on $C(K)$ and show the connection to the convergence of strong and weak ergodic nets. The results are then used to characterize mean ergodicity of Koopman semigroups corresponding to skew product actions on compact group extensions.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2013.14</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Convergence ; Dynamical systems ; Ergodic processes ; Group theory ; Markov processes ; Operators ; Theorems ; Topological manifolds ; Topology</subject><ispartof>Ergodic theory and dynamical systems, 2014-10, Vol.34 (5), p.1674-1698</ispartof><rights>Copyright ©2013 Cambridge University Press</rights><rights>Copyright ©2013 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-da835f11fcfa2f14d18814af24d51f3d931b939d8c4e36bf9813e881bf2bbdce3</citedby><cites>FETCH-LOGICAL-c373t-da835f11fcfa2f14d18814af24d51f3d931b939d8c4e36bf9813e881bf2bbdce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S014338571300014X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>SCHREIBER, MARCO</creatorcontrib><title>Topological Wiener–Wintner theorems for amenable operator semigroups</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>Inspired by topological Wiener–Wintner theorems we study the mean ergodicity of amenable semigroups of Markov operators on $C(K)$ and show the connection to the convergence of strong and weak ergodic nets. The results are then used to characterize mean ergodicity of Koopman semigroups corresponding to skew product actions on compact group extensions.</description><subject>Convergence</subject><subject>Dynamical systems</subject><subject>Ergodic processes</subject><subject>Group theory</subject><subject>Markov processes</subject><subject>Operators</subject><subject>Theorems</subject><subject>Topological manifolds</subject><subject>Topology</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkLFOwzAQhi0EEiWw8QCRWBhI8MVO4oyoooBUiaWoo-XE55IqiYOdDGy8A2_YJyFVOyDEdKfT9_86fYRcA42BQn6Pg_ZxQoHFwE_IDHhWRJxDfkpmFDiLmEjzc3Lh_ZZSyiBPZ2Sxsr1t7KauVBOua-zQ7b6-13U3TFs4vKN12PrQWBeqFjtVNhjaHp0apovHtt44O_b-kpwZ1Xi8Os6AvC0eV_PnaPn69DJ_WEYVy9kQaSVYagBMZVRigGsQArgyCdcpGKYLBmXBCi0qjiwrTSGA4YSUJilLXSELyO2ht3f2Y0Q_yLb2FTaN6tCOXkIuMiioENmE3vxBt3Z03fSdhDSjSV6wyVRA7g5U5az3Do3sXd0q9ymByr1UuZcq91LlpDAg8RFXbelqvcFfrf8FfgDdg3uZ</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>SCHREIBER, MARCO</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20141001</creationdate><title>Topological Wiener–Wintner theorems for amenable operator semigroups</title><author>SCHREIBER, MARCO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-da835f11fcfa2f14d18814af24d51f3d931b939d8c4e36bf9813e881bf2bbdce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Convergence</topic><topic>Dynamical systems</topic><topic>Ergodic processes</topic><topic>Group theory</topic><topic>Markov processes</topic><topic>Operators</topic><topic>Theorems</topic><topic>Topological manifolds</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SCHREIBER, MARCO</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SCHREIBER, MARCO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Wiener–Wintner theorems for amenable operator semigroups</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>34</volume><issue>5</issue><spage>1674</spage><epage>1698</epage><pages>1674-1698</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>Inspired by topological Wiener–Wintner theorems we study the mean ergodicity of amenable semigroups of Markov operators on $C(K)$ and show the connection to the convergence of strong and weak ergodic nets. The results are then used to characterize mean ergodicity of Koopman semigroups corresponding to skew product actions on compact group extensions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2013.14</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2014-10, Vol.34 (5), p.1674-1698
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_miscellaneous_1786190886
source Cambridge University Press Journals Complete
subjects Convergence
Dynamical systems
Ergodic processes
Group theory
Markov processes
Operators
Theorems
Topological manifolds
Topology
title Topological Wiener–Wintner theorems for amenable operator semigroups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Wiener%E2%80%93Wintner%20theorems%20for%20amenable%20operator%20semigroups&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=SCHREIBER,%20MARCO&rft.date=2014-10-01&rft.volume=34&rft.issue=5&rft.spage=1674&rft.epage=1698&rft.pages=1674-1698&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2013.14&rft_dat=%3Cproquest_cross%3E1786190886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560279301&rft_id=info:pmid/&rft_cupid=10_1017_etds_2013_14&rfr_iscdi=true