Topological Wiener–Wintner theorems for amenable operator semigroups
Inspired by topological Wiener–Wintner theorems we study the mean ergodicity of amenable semigroups of Markov operators on $C(K)$ and show the connection to the convergence of strong and weak ergodic nets. The results are then used to characterize mean ergodicity of Koopman semigroups corresponding...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2014-10, Vol.34 (5), p.1674-1698 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inspired by topological Wiener–Wintner theorems we study the mean ergodicity of amenable semigroups of Markov operators on $C(K)$ and show the connection to the convergence of strong and weak ergodic nets. The results are then used to characterize mean ergodicity of Koopman semigroups corresponding to skew product actions on compact group extensions. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2013.14 |