Structural and functional evaluation of interaction between mammalian ribosomal RNA with platinum-containing antineoplastic drugs

[Display omitted] •Destabilised green fluorescent protein to monitor translation efficiency.•Equitoxic concentrations of cisplatin, carboplatin and oxaliplatin lead to same rRNA platination patterns and intensity.•Typical plasma levels of cisplatin, carboplatin and oxaliplatin do not inhibit transla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology letters 2016-02, Vol.242, p.47-52
Hauptverfasser: Theile, Dirk, Kos, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue
container_start_page 47
container_title Toxicology letters
container_volume 242
creator Theile, Dirk
Kos, Martin
description [Display omitted] •Destabilised green fluorescent protein to monitor translation efficiency.•Equitoxic concentrations of cisplatin, carboplatin and oxaliplatin lead to same rRNA platination patterns and intensity.•Typical plasma levels of cisplatin, carboplatin and oxaliplatin do not inhibit translation efficiency in vitro. Cisplatin, oxaliplatin, and carboplatin primarily target DNA, but also alter RNA functionality, albeit to different extent. This study determined the in vitro cytotoxicity (IC50 values) of platinum drugs in LS180 cells and compared the rRNA platination patterns following IC50 exposure. Relevance of particular secondary RNA structures for platination susceptibility was evaluated by primer extension methodology using 18S rRNA as a model RNA. Consequences of rRNA platination for translation efficiency were evaluated by monitoring fluorescence of a destabilised green fluorescent protein variant through flow cytometry. Oxaliplatin and cisplatin were most cytotoxic with IC50 values of 1.7μM±0.8 and 4.1μM±0.1, respectively. Carboplatin was significantly less efficient (IC50 147.1μM±19.4). When exposed to equitoxic concentrations (respective IC50), all three compounds caused similar stop signal incidence or intensity. Moreover, the same rRNA sites were targeted without selectivity for particular secondary structures but with a slight preference for guanine-rich regions. Compared to cycloheximide, none of the drugs diminished translation efficiency at typical in vivo concentrations. In conclusion, equitoxic concentrations of platinum drugs target the same sites in cellular rRNA and cause similar platination intensities. At pharmacokinetically relevant concentrations, cisplatin, oxaliplatin or carboplatin do not inhibit translation efficiency.
doi_str_mv 10.1016/j.toxlet.2015.11.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786190217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378427415301235</els_id><sourcerecordid>1786190217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-c36e90462879bcb108cbae319f368a96a8beac4983faf1a89b96ad20a75134093</originalsourceid><addsrcrecordid>eNqNUctuFDEQtBCILIE_QMhHLjP4MesZX5CiiJcUgcTjbPV4eoJXM_biR0KO-XO8bOAY5dSq7qouu4uQl5y1nHH1Ztfm8HvB3ArGty3nLRP9I7LhQ68byZV-TDZM9kPTib47Ic9S2jHGVKe2T8mJUGqret1tyO23HIvNJcJCwU90Lt5mF3yFeAVLgQOgYabOZ4zwd0ZHzNeInq6wrrA48DS6MaRQAf36-Yxeu_yT7peq9WVtbPAZnHf-sjrUFoY6StlZOsVymZ6TJzMsCV_c1VPy4_277-cfm4svHz6dn100thNDbqxUqFmnRP3faEfOBjsCSq5nqQbQCoYRwXZ6kDPMHAY91t4kGPRbLjum5Sl5fdy7j-FXwZTN6pLFZYH6opIM7wfFNRO8fwBVCamkUIet3ZFqY0gp4mz20a0Qbwxn5pCT2ZljTuaQk-Hc1Jyq7NWdQxlXnP6L_gVTCW-PBKwnuXIYTbIOvcXJRbTZTMHd7_AHdUapag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762363269</pqid></control><display><type>article</type><title>Structural and functional evaluation of interaction between mammalian ribosomal RNA with platinum-containing antineoplastic drugs</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Theile, Dirk ; Kos, Martin</creator><creatorcontrib>Theile, Dirk ; Kos, Martin</creatorcontrib><description>[Display omitted] •Destabilised green fluorescent protein to monitor translation efficiency.•Equitoxic concentrations of cisplatin, carboplatin and oxaliplatin lead to same rRNA platination patterns and intensity.•Typical plasma levels of cisplatin, carboplatin and oxaliplatin do not inhibit translation efficiency in vitro. Cisplatin, oxaliplatin, and carboplatin primarily target DNA, but also alter RNA functionality, albeit to different extent. This study determined the in vitro cytotoxicity (IC50 values) of platinum drugs in LS180 cells and compared the rRNA platination patterns following IC50 exposure. Relevance of particular secondary RNA structures for platination susceptibility was evaluated by primer extension methodology using 18S rRNA as a model RNA. Consequences of rRNA platination for translation efficiency were evaluated by monitoring fluorescence of a destabilised green fluorescent protein variant through flow cytometry. Oxaliplatin and cisplatin were most cytotoxic with IC50 values of 1.7μM±0.8 and 4.1μM±0.1, respectively. Carboplatin was significantly less efficient (IC50 147.1μM±19.4). When exposed to equitoxic concentrations (respective IC50), all three compounds caused similar stop signal incidence or intensity. Moreover, the same rRNA sites were targeted without selectivity for particular secondary structures but with a slight preference for guanine-rich regions. Compared to cycloheximide, none of the drugs diminished translation efficiency at typical in vivo concentrations. In conclusion, equitoxic concentrations of platinum drugs target the same sites in cellular rRNA and cause similar platination intensities. At pharmacokinetically relevant concentrations, cisplatin, oxaliplatin or carboplatin do not inhibit translation efficiency.</description><identifier>ISSN: 0378-4274</identifier><identifier>EISSN: 1879-3169</identifier><identifier>DOI: 10.1016/j.toxlet.2015.11.027</identifier><identifier>PMID: 26656794</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adenocarcinoma - drug therapy ; Adenocarcinoma - genetics ; Adenocarcinoma - metabolism ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacokinetics ; Antineoplastic Agents - pharmacology ; Biocompatibility ; Carboplatin ; Carboplatin - chemistry ; Carboplatin - pharmacokinetics ; Carboplatin - pharmacology ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cisplatin ; Cisplatin - chemistry ; Cisplatin - pharmacokinetics ; Cisplatin - pharmacology ; Colonic Neoplasms - drug therapy ; Colonic Neoplasms - genetics ; Colonic Neoplasms - metabolism ; Dose-Response Relationship, Drug ; Drugs ; Exposure ; Flow cytometry ; Fluorescence ; Gene Expression Regulation, Neoplastic ; Green Fluorescent Proteins - biosynthesis ; Green Fluorescent Proteins - genetics ; Humans ; Inhibitory Concentration 50 ; Molecular Structure ; Nucleic Acid Conformation ; Organoplatinum Compounds - chemistry ; Organoplatinum Compounds - pharmacokinetics ; Organoplatinum Compounds - pharmacology ; Oxaliplatin ; Platinum ; Primer extension ; Protein Biosynthesis ; Ribonucleic acids ; Ribosomal RNA ; RNA, Ribosomal - chemistry ; RNA, Ribosomal - metabolism ; Structure-Activity Relationship ; Translation efficiency ; Translations</subject><ispartof>Toxicology letters, 2016-02, Vol.242, p.47-52</ispartof><rights>2015 Elsevier Ireland Ltd</rights><rights>Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-c36e90462879bcb108cbae319f368a96a8beac4983faf1a89b96ad20a75134093</citedby><cites>FETCH-LOGICAL-c428t-c36e90462879bcb108cbae319f368a96a8beac4983faf1a89b96ad20a75134093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.toxlet.2015.11.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26656794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Theile, Dirk</creatorcontrib><creatorcontrib>Kos, Martin</creatorcontrib><title>Structural and functional evaluation of interaction between mammalian ribosomal RNA with platinum-containing antineoplastic drugs</title><title>Toxicology letters</title><addtitle>Toxicol Lett</addtitle><description>[Display omitted] •Destabilised green fluorescent protein to monitor translation efficiency.•Equitoxic concentrations of cisplatin, carboplatin and oxaliplatin lead to same rRNA platination patterns and intensity.•Typical plasma levels of cisplatin, carboplatin and oxaliplatin do not inhibit translation efficiency in vitro. Cisplatin, oxaliplatin, and carboplatin primarily target DNA, but also alter RNA functionality, albeit to different extent. This study determined the in vitro cytotoxicity (IC50 values) of platinum drugs in LS180 cells and compared the rRNA platination patterns following IC50 exposure. Relevance of particular secondary RNA structures for platination susceptibility was evaluated by primer extension methodology using 18S rRNA as a model RNA. Consequences of rRNA platination for translation efficiency were evaluated by monitoring fluorescence of a destabilised green fluorescent protein variant through flow cytometry. Oxaliplatin and cisplatin were most cytotoxic with IC50 values of 1.7μM±0.8 and 4.1μM±0.1, respectively. Carboplatin was significantly less efficient (IC50 147.1μM±19.4). When exposed to equitoxic concentrations (respective IC50), all three compounds caused similar stop signal incidence or intensity. Moreover, the same rRNA sites were targeted without selectivity for particular secondary structures but with a slight preference for guanine-rich regions. Compared to cycloheximide, none of the drugs diminished translation efficiency at typical in vivo concentrations. In conclusion, equitoxic concentrations of platinum drugs target the same sites in cellular rRNA and cause similar platination intensities. At pharmacokinetically relevant concentrations, cisplatin, oxaliplatin or carboplatin do not inhibit translation efficiency.</description><subject>Adenocarcinoma - drug therapy</subject><subject>Adenocarcinoma - genetics</subject><subject>Adenocarcinoma - metabolism</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biocompatibility</subject><subject>Carboplatin</subject><subject>Carboplatin - chemistry</subject><subject>Carboplatin - pharmacokinetics</subject><subject>Carboplatin - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cisplatin</subject><subject>Cisplatin - chemistry</subject><subject>Cisplatin - pharmacokinetics</subject><subject>Cisplatin - pharmacology</subject><subject>Colonic Neoplasms - drug therapy</subject><subject>Colonic Neoplasms - genetics</subject><subject>Colonic Neoplasms - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drugs</subject><subject>Exposure</subject><subject>Flow cytometry</subject><subject>Fluorescence</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Green Fluorescent Proteins - biosynthesis</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Humans</subject><subject>Inhibitory Concentration 50</subject><subject>Molecular Structure</subject><subject>Nucleic Acid Conformation</subject><subject>Organoplatinum Compounds - chemistry</subject><subject>Organoplatinum Compounds - pharmacokinetics</subject><subject>Organoplatinum Compounds - pharmacology</subject><subject>Oxaliplatin</subject><subject>Platinum</subject><subject>Primer extension</subject><subject>Protein Biosynthesis</subject><subject>Ribonucleic acids</subject><subject>Ribosomal RNA</subject><subject>RNA, Ribosomal - chemistry</subject><subject>RNA, Ribosomal - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>Translation efficiency</subject><subject>Translations</subject><issn>0378-4274</issn><issn>1879-3169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUctuFDEQtBCILIE_QMhHLjP4MesZX5CiiJcUgcTjbPV4eoJXM_biR0KO-XO8bOAY5dSq7qouu4uQl5y1nHH1Ztfm8HvB3ArGty3nLRP9I7LhQ68byZV-TDZM9kPTib47Ic9S2jHGVKe2T8mJUGqret1tyO23HIvNJcJCwU90Lt5mF3yFeAVLgQOgYabOZ4zwd0ZHzNeInq6wrrA48DS6MaRQAf36-Yxeu_yT7peq9WVtbPAZnHf-sjrUFoY6StlZOsVymZ6TJzMsCV_c1VPy4_277-cfm4svHz6dn100thNDbqxUqFmnRP3faEfOBjsCSq5nqQbQCoYRwXZ6kDPMHAY91t4kGPRbLjum5Sl5fdy7j-FXwZTN6pLFZYH6opIM7wfFNRO8fwBVCamkUIet3ZFqY0gp4mz20a0Qbwxn5pCT2ZljTuaQk-Hc1Jyq7NWdQxlXnP6L_gVTCW-PBKwnuXIYTbIOvcXJRbTZTMHd7_AHdUapag</recordid><startdate>20160203</startdate><enddate>20160203</enddate><creator>Theile, Dirk</creator><creator>Kos, Martin</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U7</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20160203</creationdate><title>Structural and functional evaluation of interaction between mammalian ribosomal RNA with platinum-containing antineoplastic drugs</title><author>Theile, Dirk ; Kos, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-c36e90462879bcb108cbae319f368a96a8beac4983faf1a89b96ad20a75134093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenocarcinoma - drug therapy</topic><topic>Adenocarcinoma - genetics</topic><topic>Adenocarcinoma - metabolism</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biocompatibility</topic><topic>Carboplatin</topic><topic>Carboplatin - chemistry</topic><topic>Carboplatin - pharmacokinetics</topic><topic>Carboplatin - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cisplatin</topic><topic>Cisplatin - chemistry</topic><topic>Cisplatin - pharmacokinetics</topic><topic>Cisplatin - pharmacology</topic><topic>Colonic Neoplasms - drug therapy</topic><topic>Colonic Neoplasms - genetics</topic><topic>Colonic Neoplasms - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drugs</topic><topic>Exposure</topic><topic>Flow cytometry</topic><topic>Fluorescence</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Green Fluorescent Proteins - biosynthesis</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Humans</topic><topic>Inhibitory Concentration 50</topic><topic>Molecular Structure</topic><topic>Nucleic Acid Conformation</topic><topic>Organoplatinum Compounds - chemistry</topic><topic>Organoplatinum Compounds - pharmacokinetics</topic><topic>Organoplatinum Compounds - pharmacology</topic><topic>Oxaliplatin</topic><topic>Platinum</topic><topic>Primer extension</topic><topic>Protein Biosynthesis</topic><topic>Ribonucleic acids</topic><topic>Ribosomal RNA</topic><topic>RNA, Ribosomal - chemistry</topic><topic>RNA, Ribosomal - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>Translation efficiency</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theile, Dirk</creatorcontrib><creatorcontrib>Kos, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Toxicology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theile, Dirk</au><au>Kos, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and functional evaluation of interaction between mammalian ribosomal RNA with platinum-containing antineoplastic drugs</atitle><jtitle>Toxicology letters</jtitle><addtitle>Toxicol Lett</addtitle><date>2016-02-03</date><risdate>2016</risdate><volume>242</volume><spage>47</spage><epage>52</epage><pages>47-52</pages><issn>0378-4274</issn><eissn>1879-3169</eissn><abstract>[Display omitted] •Destabilised green fluorescent protein to monitor translation efficiency.•Equitoxic concentrations of cisplatin, carboplatin and oxaliplatin lead to same rRNA platination patterns and intensity.•Typical plasma levels of cisplatin, carboplatin and oxaliplatin do not inhibit translation efficiency in vitro. Cisplatin, oxaliplatin, and carboplatin primarily target DNA, but also alter RNA functionality, albeit to different extent. This study determined the in vitro cytotoxicity (IC50 values) of platinum drugs in LS180 cells and compared the rRNA platination patterns following IC50 exposure. Relevance of particular secondary RNA structures for platination susceptibility was evaluated by primer extension methodology using 18S rRNA as a model RNA. Consequences of rRNA platination for translation efficiency were evaluated by monitoring fluorescence of a destabilised green fluorescent protein variant through flow cytometry. Oxaliplatin and cisplatin were most cytotoxic with IC50 values of 1.7μM±0.8 and 4.1μM±0.1, respectively. Carboplatin was significantly less efficient (IC50 147.1μM±19.4). When exposed to equitoxic concentrations (respective IC50), all three compounds caused similar stop signal incidence or intensity. Moreover, the same rRNA sites were targeted without selectivity for particular secondary structures but with a slight preference for guanine-rich regions. Compared to cycloheximide, none of the drugs diminished translation efficiency at typical in vivo concentrations. In conclusion, equitoxic concentrations of platinum drugs target the same sites in cellular rRNA and cause similar platination intensities. At pharmacokinetically relevant concentrations, cisplatin, oxaliplatin or carboplatin do not inhibit translation efficiency.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26656794</pmid><doi>10.1016/j.toxlet.2015.11.027</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-4274
ispartof Toxicology letters, 2016-02, Vol.242, p.47-52
issn 0378-4274
1879-3169
language eng
recordid cdi_proquest_miscellaneous_1786190217
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adenocarcinoma - drug therapy
Adenocarcinoma - genetics
Adenocarcinoma - metabolism
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacokinetics
Antineoplastic Agents - pharmacology
Biocompatibility
Carboplatin
Carboplatin - chemistry
Carboplatin - pharmacokinetics
Carboplatin - pharmacology
Cell Line, Tumor
Cell Proliferation - drug effects
Cisplatin
Cisplatin - chemistry
Cisplatin - pharmacokinetics
Cisplatin - pharmacology
Colonic Neoplasms - drug therapy
Colonic Neoplasms - genetics
Colonic Neoplasms - metabolism
Dose-Response Relationship, Drug
Drugs
Exposure
Flow cytometry
Fluorescence
Gene Expression Regulation, Neoplastic
Green Fluorescent Proteins - biosynthesis
Green Fluorescent Proteins - genetics
Humans
Inhibitory Concentration 50
Molecular Structure
Nucleic Acid Conformation
Organoplatinum Compounds - chemistry
Organoplatinum Compounds - pharmacokinetics
Organoplatinum Compounds - pharmacology
Oxaliplatin
Platinum
Primer extension
Protein Biosynthesis
Ribonucleic acids
Ribosomal RNA
RNA, Ribosomal - chemistry
RNA, Ribosomal - metabolism
Structure-Activity Relationship
Translation efficiency
Translations
title Structural and functional evaluation of interaction between mammalian ribosomal RNA with platinum-containing antineoplastic drugs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20functional%20evaluation%20of%20interaction%20between%20mammalian%20ribosomal%20RNA%20with%20platinum-containing%20antineoplastic%20drugs&rft.jtitle=Toxicology%20letters&rft.au=Theile,%20Dirk&rft.date=2016-02-03&rft.volume=242&rft.spage=47&rft.epage=52&rft.pages=47-52&rft.issn=0378-4274&rft.eissn=1879-3169&rft_id=info:doi/10.1016/j.toxlet.2015.11.027&rft_dat=%3Cproquest_cross%3E1786190217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762363269&rft_id=info:pmid/26656794&rft_els_id=S0378427415301235&rfr_iscdi=true