Structural and functional evaluation of interaction between mammalian ribosomal RNA with platinum-containing antineoplastic drugs
[Display omitted] •Destabilised green fluorescent protein to monitor translation efficiency.•Equitoxic concentrations of cisplatin, carboplatin and oxaliplatin lead to same rRNA platination patterns and intensity.•Typical plasma levels of cisplatin, carboplatin and oxaliplatin do not inhibit transla...
Gespeichert in:
Veröffentlicht in: | Toxicology letters 2016-02, Vol.242, p.47-52 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | |
container_start_page | 47 |
container_title | Toxicology letters |
container_volume | 242 |
creator | Theile, Dirk Kos, Martin |
description | [Display omitted]
•Destabilised green fluorescent protein to monitor translation efficiency.•Equitoxic concentrations of cisplatin, carboplatin and oxaliplatin lead to same rRNA platination patterns and intensity.•Typical plasma levels of cisplatin, carboplatin and oxaliplatin do not inhibit translation efficiency in vitro.
Cisplatin, oxaliplatin, and carboplatin primarily target DNA, but also alter RNA functionality, albeit to different extent. This study determined the in vitro cytotoxicity (IC50 values) of platinum drugs in LS180 cells and compared the rRNA platination patterns following IC50 exposure. Relevance of particular secondary RNA structures for platination susceptibility was evaluated by primer extension methodology using 18S rRNA as a model RNA. Consequences of rRNA platination for translation efficiency were evaluated by monitoring fluorescence of a destabilised green fluorescent protein variant through flow cytometry. Oxaliplatin and cisplatin were most cytotoxic with IC50 values of 1.7μM±0.8 and 4.1μM±0.1, respectively. Carboplatin was significantly less efficient (IC50 147.1μM±19.4). When exposed to equitoxic concentrations (respective IC50), all three compounds caused similar stop signal incidence or intensity. Moreover, the same rRNA sites were targeted without selectivity for particular secondary structures but with a slight preference for guanine-rich regions. Compared to cycloheximide, none of the drugs diminished translation efficiency at typical in vivo concentrations. In conclusion, equitoxic concentrations of platinum drugs target the same sites in cellular rRNA and cause similar platination intensities. At pharmacokinetically relevant concentrations, cisplatin, oxaliplatin or carboplatin do not inhibit translation efficiency. |
doi_str_mv | 10.1016/j.toxlet.2015.11.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786190217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378427415301235</els_id><sourcerecordid>1786190217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-c36e90462879bcb108cbae319f368a96a8beac4983faf1a89b96ad20a75134093</originalsourceid><addsrcrecordid>eNqNUctuFDEQtBCILIE_QMhHLjP4MesZX5CiiJcUgcTjbPV4eoJXM_biR0KO-XO8bOAY5dSq7qouu4uQl5y1nHH1Ztfm8HvB3ArGty3nLRP9I7LhQ68byZV-TDZM9kPTib47Ic9S2jHGVKe2T8mJUGqret1tyO23HIvNJcJCwU90Lt5mF3yFeAVLgQOgYabOZ4zwd0ZHzNeInq6wrrA48DS6MaRQAf36-Yxeu_yT7peq9WVtbPAZnHf-sjrUFoY6StlZOsVymZ6TJzMsCV_c1VPy4_277-cfm4svHz6dn100thNDbqxUqFmnRP3faEfOBjsCSq5nqQbQCoYRwXZ6kDPMHAY91t4kGPRbLjum5Sl5fdy7j-FXwZTN6pLFZYH6opIM7wfFNRO8fwBVCamkUIet3ZFqY0gp4mz20a0Qbwxn5pCT2ZljTuaQk-Hc1Jyq7NWdQxlXnP6L_gVTCW-PBKwnuXIYTbIOvcXJRbTZTMHd7_AHdUapag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762363269</pqid></control><display><type>article</type><title>Structural and functional evaluation of interaction between mammalian ribosomal RNA with platinum-containing antineoplastic drugs</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Theile, Dirk ; Kos, Martin</creator><creatorcontrib>Theile, Dirk ; Kos, Martin</creatorcontrib><description>[Display omitted]
•Destabilised green fluorescent protein to monitor translation efficiency.•Equitoxic concentrations of cisplatin, carboplatin and oxaliplatin lead to same rRNA platination patterns and intensity.•Typical plasma levels of cisplatin, carboplatin and oxaliplatin do not inhibit translation efficiency in vitro.
Cisplatin, oxaliplatin, and carboplatin primarily target DNA, but also alter RNA functionality, albeit to different extent. This study determined the in vitro cytotoxicity (IC50 values) of platinum drugs in LS180 cells and compared the rRNA platination patterns following IC50 exposure. Relevance of particular secondary RNA structures for platination susceptibility was evaluated by primer extension methodology using 18S rRNA as a model RNA. Consequences of rRNA platination for translation efficiency were evaluated by monitoring fluorescence of a destabilised green fluorescent protein variant through flow cytometry. Oxaliplatin and cisplatin were most cytotoxic with IC50 values of 1.7μM±0.8 and 4.1μM±0.1, respectively. Carboplatin was significantly less efficient (IC50 147.1μM±19.4). When exposed to equitoxic concentrations (respective IC50), all three compounds caused similar stop signal incidence or intensity. Moreover, the same rRNA sites were targeted without selectivity for particular secondary structures but with a slight preference for guanine-rich regions. Compared to cycloheximide, none of the drugs diminished translation efficiency at typical in vivo concentrations. In conclusion, equitoxic concentrations of platinum drugs target the same sites in cellular rRNA and cause similar platination intensities. At pharmacokinetically relevant concentrations, cisplatin, oxaliplatin or carboplatin do not inhibit translation efficiency.</description><identifier>ISSN: 0378-4274</identifier><identifier>EISSN: 1879-3169</identifier><identifier>DOI: 10.1016/j.toxlet.2015.11.027</identifier><identifier>PMID: 26656794</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Adenocarcinoma - drug therapy ; Adenocarcinoma - genetics ; Adenocarcinoma - metabolism ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacokinetics ; Antineoplastic Agents - pharmacology ; Biocompatibility ; Carboplatin ; Carboplatin - chemistry ; Carboplatin - pharmacokinetics ; Carboplatin - pharmacology ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cisplatin ; Cisplatin - chemistry ; Cisplatin - pharmacokinetics ; Cisplatin - pharmacology ; Colonic Neoplasms - drug therapy ; Colonic Neoplasms - genetics ; Colonic Neoplasms - metabolism ; Dose-Response Relationship, Drug ; Drugs ; Exposure ; Flow cytometry ; Fluorescence ; Gene Expression Regulation, Neoplastic ; Green Fluorescent Proteins - biosynthesis ; Green Fluorescent Proteins - genetics ; Humans ; Inhibitory Concentration 50 ; Molecular Structure ; Nucleic Acid Conformation ; Organoplatinum Compounds - chemistry ; Organoplatinum Compounds - pharmacokinetics ; Organoplatinum Compounds - pharmacology ; Oxaliplatin ; Platinum ; Primer extension ; Protein Biosynthesis ; Ribonucleic acids ; Ribosomal RNA ; RNA, Ribosomal - chemistry ; RNA, Ribosomal - metabolism ; Structure-Activity Relationship ; Translation efficiency ; Translations</subject><ispartof>Toxicology letters, 2016-02, Vol.242, p.47-52</ispartof><rights>2015 Elsevier Ireland Ltd</rights><rights>Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-c36e90462879bcb108cbae319f368a96a8beac4983faf1a89b96ad20a75134093</citedby><cites>FETCH-LOGICAL-c428t-c36e90462879bcb108cbae319f368a96a8beac4983faf1a89b96ad20a75134093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.toxlet.2015.11.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26656794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Theile, Dirk</creatorcontrib><creatorcontrib>Kos, Martin</creatorcontrib><title>Structural and functional evaluation of interaction between mammalian ribosomal RNA with platinum-containing antineoplastic drugs</title><title>Toxicology letters</title><addtitle>Toxicol Lett</addtitle><description>[Display omitted]
•Destabilised green fluorescent protein to monitor translation efficiency.•Equitoxic concentrations of cisplatin, carboplatin and oxaliplatin lead to same rRNA platination patterns and intensity.•Typical plasma levels of cisplatin, carboplatin and oxaliplatin do not inhibit translation efficiency in vitro.
Cisplatin, oxaliplatin, and carboplatin primarily target DNA, but also alter RNA functionality, albeit to different extent. This study determined the in vitro cytotoxicity (IC50 values) of platinum drugs in LS180 cells and compared the rRNA platination patterns following IC50 exposure. Relevance of particular secondary RNA structures for platination susceptibility was evaluated by primer extension methodology using 18S rRNA as a model RNA. Consequences of rRNA platination for translation efficiency were evaluated by monitoring fluorescence of a destabilised green fluorescent protein variant through flow cytometry. Oxaliplatin and cisplatin were most cytotoxic with IC50 values of 1.7μM±0.8 and 4.1μM±0.1, respectively. Carboplatin was significantly less efficient (IC50 147.1μM±19.4). When exposed to equitoxic concentrations (respective IC50), all three compounds caused similar stop signal incidence or intensity. Moreover, the same rRNA sites were targeted without selectivity for particular secondary structures but with a slight preference for guanine-rich regions. Compared to cycloheximide, none of the drugs diminished translation efficiency at typical in vivo concentrations. In conclusion, equitoxic concentrations of platinum drugs target the same sites in cellular rRNA and cause similar platination intensities. At pharmacokinetically relevant concentrations, cisplatin, oxaliplatin or carboplatin do not inhibit translation efficiency.</description><subject>Adenocarcinoma - drug therapy</subject><subject>Adenocarcinoma - genetics</subject><subject>Adenocarcinoma - metabolism</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacokinetics</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biocompatibility</subject><subject>Carboplatin</subject><subject>Carboplatin - chemistry</subject><subject>Carboplatin - pharmacokinetics</subject><subject>Carboplatin - pharmacology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cisplatin</subject><subject>Cisplatin - chemistry</subject><subject>Cisplatin - pharmacokinetics</subject><subject>Cisplatin - pharmacology</subject><subject>Colonic Neoplasms - drug therapy</subject><subject>Colonic Neoplasms - genetics</subject><subject>Colonic Neoplasms - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drugs</subject><subject>Exposure</subject><subject>Flow cytometry</subject><subject>Fluorescence</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Green Fluorescent Proteins - biosynthesis</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Humans</subject><subject>Inhibitory Concentration 50</subject><subject>Molecular Structure</subject><subject>Nucleic Acid Conformation</subject><subject>Organoplatinum Compounds - chemistry</subject><subject>Organoplatinum Compounds - pharmacokinetics</subject><subject>Organoplatinum Compounds - pharmacology</subject><subject>Oxaliplatin</subject><subject>Platinum</subject><subject>Primer extension</subject><subject>Protein Biosynthesis</subject><subject>Ribonucleic acids</subject><subject>Ribosomal RNA</subject><subject>RNA, Ribosomal - chemistry</subject><subject>RNA, Ribosomal - metabolism</subject><subject>Structure-Activity Relationship</subject><subject>Translation efficiency</subject><subject>Translations</subject><issn>0378-4274</issn><issn>1879-3169</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUctuFDEQtBCILIE_QMhHLjP4MesZX5CiiJcUgcTjbPV4eoJXM_biR0KO-XO8bOAY5dSq7qouu4uQl5y1nHH1Ztfm8HvB3ArGty3nLRP9I7LhQ68byZV-TDZM9kPTib47Ic9S2jHGVKe2T8mJUGqret1tyO23HIvNJcJCwU90Lt5mF3yFeAVLgQOgYabOZ4zwd0ZHzNeInq6wrrA48DS6MaRQAf36-Yxeu_yT7peq9WVtbPAZnHf-sjrUFoY6StlZOsVymZ6TJzMsCV_c1VPy4_277-cfm4svHz6dn100thNDbqxUqFmnRP3faEfOBjsCSq5nqQbQCoYRwXZ6kDPMHAY91t4kGPRbLjum5Sl5fdy7j-FXwZTN6pLFZYH6opIM7wfFNRO8fwBVCamkUIet3ZFqY0gp4mz20a0Qbwxn5pCT2ZljTuaQk-Hc1Jyq7NWdQxlXnP6L_gVTCW-PBKwnuXIYTbIOvcXJRbTZTMHd7_AHdUapag</recordid><startdate>20160203</startdate><enddate>20160203</enddate><creator>Theile, Dirk</creator><creator>Kos, Martin</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7U7</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20160203</creationdate><title>Structural and functional evaluation of interaction between mammalian ribosomal RNA with platinum-containing antineoplastic drugs</title><author>Theile, Dirk ; Kos, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-c36e90462879bcb108cbae319f368a96a8beac4983faf1a89b96ad20a75134093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenocarcinoma - drug therapy</topic><topic>Adenocarcinoma - genetics</topic><topic>Adenocarcinoma - metabolism</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacokinetics</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biocompatibility</topic><topic>Carboplatin</topic><topic>Carboplatin - chemistry</topic><topic>Carboplatin - pharmacokinetics</topic><topic>Carboplatin - pharmacology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cisplatin</topic><topic>Cisplatin - chemistry</topic><topic>Cisplatin - pharmacokinetics</topic><topic>Cisplatin - pharmacology</topic><topic>Colonic Neoplasms - drug therapy</topic><topic>Colonic Neoplasms - genetics</topic><topic>Colonic Neoplasms - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drugs</topic><topic>Exposure</topic><topic>Flow cytometry</topic><topic>Fluorescence</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Green Fluorescent Proteins - biosynthesis</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Humans</topic><topic>Inhibitory Concentration 50</topic><topic>Molecular Structure</topic><topic>Nucleic Acid Conformation</topic><topic>Organoplatinum Compounds - chemistry</topic><topic>Organoplatinum Compounds - pharmacokinetics</topic><topic>Organoplatinum Compounds - pharmacology</topic><topic>Oxaliplatin</topic><topic>Platinum</topic><topic>Primer extension</topic><topic>Protein Biosynthesis</topic><topic>Ribonucleic acids</topic><topic>Ribosomal RNA</topic><topic>RNA, Ribosomal - chemistry</topic><topic>RNA, Ribosomal - metabolism</topic><topic>Structure-Activity Relationship</topic><topic>Translation efficiency</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Theile, Dirk</creatorcontrib><creatorcontrib>Kos, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Toxicology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Theile, Dirk</au><au>Kos, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and functional evaluation of interaction between mammalian ribosomal RNA with platinum-containing antineoplastic drugs</atitle><jtitle>Toxicology letters</jtitle><addtitle>Toxicol Lett</addtitle><date>2016-02-03</date><risdate>2016</risdate><volume>242</volume><spage>47</spage><epage>52</epage><pages>47-52</pages><issn>0378-4274</issn><eissn>1879-3169</eissn><abstract>[Display omitted]
•Destabilised green fluorescent protein to monitor translation efficiency.•Equitoxic concentrations of cisplatin, carboplatin and oxaliplatin lead to same rRNA platination patterns and intensity.•Typical plasma levels of cisplatin, carboplatin and oxaliplatin do not inhibit translation efficiency in vitro.
Cisplatin, oxaliplatin, and carboplatin primarily target DNA, but also alter RNA functionality, albeit to different extent. This study determined the in vitro cytotoxicity (IC50 values) of platinum drugs in LS180 cells and compared the rRNA platination patterns following IC50 exposure. Relevance of particular secondary RNA structures for platination susceptibility was evaluated by primer extension methodology using 18S rRNA as a model RNA. Consequences of rRNA platination for translation efficiency were evaluated by monitoring fluorescence of a destabilised green fluorescent protein variant through flow cytometry. Oxaliplatin and cisplatin were most cytotoxic with IC50 values of 1.7μM±0.8 and 4.1μM±0.1, respectively. Carboplatin was significantly less efficient (IC50 147.1μM±19.4). When exposed to equitoxic concentrations (respective IC50), all three compounds caused similar stop signal incidence or intensity. Moreover, the same rRNA sites were targeted without selectivity for particular secondary structures but with a slight preference for guanine-rich regions. Compared to cycloheximide, none of the drugs diminished translation efficiency at typical in vivo concentrations. In conclusion, equitoxic concentrations of platinum drugs target the same sites in cellular rRNA and cause similar platination intensities. At pharmacokinetically relevant concentrations, cisplatin, oxaliplatin or carboplatin do not inhibit translation efficiency.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>26656794</pmid><doi>10.1016/j.toxlet.2015.11.027</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-4274 |
ispartof | Toxicology letters, 2016-02, Vol.242, p.47-52 |
issn | 0378-4274 1879-3169 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786190217 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adenocarcinoma - drug therapy Adenocarcinoma - genetics Adenocarcinoma - metabolism Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacokinetics Antineoplastic Agents - pharmacology Biocompatibility Carboplatin Carboplatin - chemistry Carboplatin - pharmacokinetics Carboplatin - pharmacology Cell Line, Tumor Cell Proliferation - drug effects Cisplatin Cisplatin - chemistry Cisplatin - pharmacokinetics Cisplatin - pharmacology Colonic Neoplasms - drug therapy Colonic Neoplasms - genetics Colonic Neoplasms - metabolism Dose-Response Relationship, Drug Drugs Exposure Flow cytometry Fluorescence Gene Expression Regulation, Neoplastic Green Fluorescent Proteins - biosynthesis Green Fluorescent Proteins - genetics Humans Inhibitory Concentration 50 Molecular Structure Nucleic Acid Conformation Organoplatinum Compounds - chemistry Organoplatinum Compounds - pharmacokinetics Organoplatinum Compounds - pharmacology Oxaliplatin Platinum Primer extension Protein Biosynthesis Ribonucleic acids Ribosomal RNA RNA, Ribosomal - chemistry RNA, Ribosomal - metabolism Structure-Activity Relationship Translation efficiency Translations |
title | Structural and functional evaluation of interaction between mammalian ribosomal RNA with platinum-containing antineoplastic drugs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A12%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20functional%20evaluation%20of%20interaction%20between%20mammalian%20ribosomal%20RNA%20with%20platinum-containing%20antineoplastic%20drugs&rft.jtitle=Toxicology%20letters&rft.au=Theile,%20Dirk&rft.date=2016-02-03&rft.volume=242&rft.spage=47&rft.epage=52&rft.pages=47-52&rft.issn=0378-4274&rft.eissn=1879-3169&rft_id=info:doi/10.1016/j.toxlet.2015.11.027&rft_dat=%3Cproquest_cross%3E1786190217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762363269&rft_id=info:pmid/26656794&rft_els_id=S0378427415301235&rfr_iscdi=true |